Why position times mass is equal to 0 here (vanishes)?

Istiak
Messages
158
Reaction score
12
Homework Statement
Why position times mass is 0 inside Sigma summation?
Relevant Equations
F=ma
$$\sum_i m_ir_i$$

Why the term always vanishes?
Screenshot from 2021-08-23 00-39-56.png
There's some more equations where the mr was vanished. But, they didn't explain why it vanish. Why the term vanish? I think that's for position 0,isn't it?
 

Attachments

  • Screenshot from 2021-08-23 00-39-56.png
    Screenshot from 2021-08-23 00-39-56.png
    6.2 KB · Views: 119
Last edited:
Physics news on Phys.org
If the origin is taken as the centre of mass, then the sum is zero by definition.
 
PeroK said:
If the origin is taken as the centre of mass, then the sum is zero by definition.
I think the origin is at an arbitrary position. Vector ##\vec R## is the position of the CM of a rigid body relative to the origin. This looks like part of the proof that the angular momentum of a rigid body is the sum of the angular momentum of the CM (orbital) and about the CM (spin). The primed coordinate ##\vec {r_i}'## is the location of element ##dm_i## relative to the CM, i.e. ##\vec {r_i}'=\vec r-\vec R##. Otherwise yes, the sums are zero by definition of the CM.
Istiakshovon said:
There's some more equations where the mr was vanished. But, they didn't explain why it vanish. Why the term vanish?
Define ##\vec R## as the position of the CM relative to an arbitrary origin and ##\vec r## and ##\vec {r_i}'## respectively as the position of ##m_i## relaitve to the origin and relative to the CM. Then ##\vec r_i = \vec R+\vec {r_i}'## so you can write the position of the CM relative to the origin, $$\vec X=\frac{\sum_i m_i\vec r_i}{\sum_i m_i}=\frac{\sum_{i} m_i(\vec R+\vec {r_i}')}{\sum{_i} m_i}=\vec R+\frac{\sum{_i} m_i\vec {r_i}'}{\sum{_i} m_i}.$$ By definition, ##\vec X = \vec R##. The only way for this to be true is to have ##\dfrac{\sum_i m_i\vec {r_i}'}{\sum_i m_i}=0.##
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
806
Replies
15
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
1K
  • · Replies 22 ·
Replies
22
Views
4K
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K