Brutus
- 7
- 0
Why am I not allowed to reuse rows to find the determinant via elementary operations?
Hi,
I am learning about matrices and determinants and there is something I can't figure out, straight to the point with an example:
Evaluating the determinant...
<br /> \begin{bmatrix}<br /> 1&2&3&4 \\<br /> 5&6&7&8 \\<br /> 2&6&4&8 \\<br /> 3&1&1&2<br /> \end{bmatrix}=2<br /> \begin{bmatrix}<br /> 1&2&3&4 \\<br /> 5&6&7&8 \\<br /> 1&3&2&4 \\<br /> 3&1&1&2<br /> \end{bmatrix}=2<br /> \begin{bmatrix}<br /> 1&2&3&4 \\<br /> 0&-4&-8&-12 \\<br /> 0&1&-1&0 \\<br /> 0&-5&-8&-10<br /> \end{bmatrix}=8<br /> \begin{bmatrix}<br /> 1&2&3&4 \\<br /> 0&-1&-2&-3 \\<br /> 0&1&-1&0 \\<br /> 0&-5&-8&-10<br /> \end{bmatrix}=8<br /> \begin{bmatrix}<br /> 1&2&3&4 \\<br /> 0&-1&-2&-3 \\<br /> 0&0&-\frac{1}{2}&-2 \\<br /> 0&0&-\frac{1}{2}&0<br /> \end{bmatrix}=8<br /> \begin{bmatrix}<br /> 1&2&3&4 \\<br /> 0&-1&-2&-3 \\<br /> 0&0&-\frac{1}{2}&-2 \\<br /> 0&0&0&2<br /> \end{bmatrix}=8<br />
Obviously, it's wrong, the right answer is 72(see [1]), I didn't work on the main diagonal on purpose, I wanted to see if I was allowed to reuse rows(or cols), so why am I not allowed? what am I really doing to the matrix each time I reuse a row(or col) ?
I am not asking for a proof or anything, just a simple explanation for human beings ;).
Also, working with both rows and columns is not allowed either, I guess this is a particular case of the above since I am reusing a cell.
Thank you.
[1] http://www.sosmath.com/matrix/determ1/determ1.html
Hi,
I am learning about matrices and determinants and there is something I can't figure out, straight to the point with an example:
Evaluating the determinant...
<br /> \begin{bmatrix}<br /> 1&2&3&4 \\<br /> 5&6&7&8 \\<br /> 2&6&4&8 \\<br /> 3&1&1&2<br /> \end{bmatrix}=2<br /> \begin{bmatrix}<br /> 1&2&3&4 \\<br /> 5&6&7&8 \\<br /> 1&3&2&4 \\<br /> 3&1&1&2<br /> \end{bmatrix}=2<br /> \begin{bmatrix}<br /> 1&2&3&4 \\<br /> 0&-4&-8&-12 \\<br /> 0&1&-1&0 \\<br /> 0&-5&-8&-10<br /> \end{bmatrix}=8<br /> \begin{bmatrix}<br /> 1&2&3&4 \\<br /> 0&-1&-2&-3 \\<br /> 0&1&-1&0 \\<br /> 0&-5&-8&-10<br /> \end{bmatrix}=8<br /> \begin{bmatrix}<br /> 1&2&3&4 \\<br /> 0&-1&-2&-3 \\<br /> 0&0&-\frac{1}{2}&-2 \\<br /> 0&0&-\frac{1}{2}&0<br /> \end{bmatrix}=8<br /> \begin{bmatrix}<br /> 1&2&3&4 \\<br /> 0&-1&-2&-3 \\<br /> 0&0&-\frac{1}{2}&-2 \\<br /> 0&0&0&2<br /> \end{bmatrix}=8<br />
Obviously, it's wrong, the right answer is 72(see [1]), I didn't work on the main diagonal on purpose, I wanted to see if I was allowed to reuse rows(or cols), so why am I not allowed? what am I really doing to the matrix each time I reuse a row(or col) ?
I am not asking for a proof or anything, just a simple explanation for human beings ;).
Also, working with both rows and columns is not allowed either, I guess this is a particular case of the above since I am reusing a cell.
Thank you.
[1] http://www.sosmath.com/matrix/determ1/determ1.html
Last edited: