Why Reusing Rows & Cols To Find Determinants Is Not Allowed

  • Thread starter Thread starter Brutus
  • Start date Start date
  • Tags Tags
    Determinants
Brutus
Messages
7
Reaction score
0
Why am I not allowed to reuse rows to find the determinant via elementary operations?

Hi,

I am learning about matrices and determinants and there is something I can't figure out, straight to the point with an example:

Evaluating the determinant...
<br /> \begin{bmatrix}<br /> 1&amp;2&amp;3&amp;4 \\<br /> 5&amp;6&amp;7&amp;8 \\<br /> 2&amp;6&amp;4&amp;8 \\<br /> 3&amp;1&amp;1&amp;2<br /> \end{bmatrix}=2<br /> \begin{bmatrix}<br /> 1&amp;2&amp;3&amp;4 \\<br /> 5&amp;6&amp;7&amp;8 \\<br /> 1&amp;3&amp;2&amp;4 \\<br /> 3&amp;1&amp;1&amp;2<br /> \end{bmatrix}=2<br /> \begin{bmatrix}<br /> 1&amp;2&amp;3&amp;4 \\<br /> 0&amp;-4&amp;-8&amp;-12 \\<br /> 0&amp;1&amp;-1&amp;0 \\<br /> 0&amp;-5&amp;-8&amp;-10<br /> \end{bmatrix}=8<br /> \begin{bmatrix}<br /> 1&amp;2&amp;3&amp;4 \\<br /> 0&amp;-1&amp;-2&amp;-3 \\<br /> 0&amp;1&amp;-1&amp;0 \\<br /> 0&amp;-5&amp;-8&amp;-10<br /> \end{bmatrix}=8<br /> \begin{bmatrix}<br /> 1&amp;2&amp;3&amp;4 \\<br /> 0&amp;-1&amp;-2&amp;-3 \\<br /> 0&amp;0&amp;-\frac{1}{2}&amp;-2 \\<br /> 0&amp;0&amp;-\frac{1}{2}&amp;0<br /> \end{bmatrix}=8<br /> \begin{bmatrix}<br /> 1&amp;2&amp;3&amp;4 \\<br /> 0&amp;-1&amp;-2&amp;-3 \\<br /> 0&amp;0&amp;-\frac{1}{2}&amp;-2 \\<br /> 0&amp;0&amp;0&amp;2<br /> \end{bmatrix}=8<br />

Obviously, it's wrong, the right answer is 72(see [1]), I didn't work on the main diagonal on purpose, I wanted to see if I was allowed to reuse rows(or cols), so why am I not allowed? what am I really doing to the matrix each time I reuse a row(or col) ?

I am not asking for a proof or anything, just a simple explanation for human beings ;).

Also, working with both rows and columns is not allowed either, I guess this is a particular case of the above since I am reusing a cell.

Thank you.

[1] http://www.sosmath.com/matrix/determ1/determ1.html
 
Last edited:
Physics news on Phys.org


You can reuse rows. You can also mix row and column operations. But how did you get from the fourth matrix to the fifth? I'm baffled.
 


Nevermind, I made a stupid mistake, in step 4 I did: row 3 - row 1 * 1/2 and forgot to write the -1/2 in A<sub>3 1</sub> ...
I also forgot to include the 5/2 in A<sub>4 1</sub> when doing row 4 - row 1 * (-5/2)
damn...

I guess my mind was expecting a failure and it tricked itself into it...

Thank you.
 
Last edited:


You can, as Dick said, use a row more than once. But it is more orderly and less error-prone if you work from upper left to lower right working with each row and column in turn. I would have done this as follows:
\begin{bmatrix} 1&amp;2&amp;3&amp;4 \\5&amp;6&amp;7&amp;8 \\2&amp;6&amp;4&amp;8 \\3&amp;1&amp;1&amp;2\end{bmatrix}= \begin{bmatrix}1&amp;2&amp;3&amp;4\\0&amp;-4&amp;-8&amp;-12\\0&amp;2&amp;-2&amp;0\\0&amp;-5&amp;-8&amp;-10\end{bmatrix}
"clearing" the first column. Now, seeing the "-4" in the pivot for the second column/row,
=-4\begin{bmatrix}1&amp;2&amp;3&amp;4\\0&amp;1&amp;2&amp;3\\0&amp;0&amp;-6&amp;-6\\0&amp;0&amp;2&amp;5\end{bmatrix}
=(-4)(-6)\begin{bmatrix}1&amp;2&amp;3&amp;4\\0&amp;1&amp;2&amp;3\\0&amp;0&amp;1&amp;1\\0&amp;0&amp;0&amp;3\end{bmatrix}
=(-4)(-6)(3)\begin{bmatrix}1&amp;2&amp;3&amp;4\\0&amp;1&amp;2&amp;3\\0&amp;0&amp;1&amp;1\\0&amp;0&amp;0&amp;1\end{bmatrix}
and now, since we have "1"s along the main diagonal, the determinant is (-4)(-6)(3)= 72.
 


Great, thanks.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top