Why s is substitute with jw in transfer function?

Click For Summary
SUMMARY

The substitution of \( s = j\omega \) in a transfer function \( G(s) \) to obtain \( G(j\omega) \) is essential for analyzing the gain of linear systems in the frequency domain. This transformation differentiates the bilateral Laplace transform from the Fourier transform, where \( G(j\omega) \) represents the Fourier transform of the system's impulse response. Understanding this substitution allows for the evaluation of system behavior at specific frequencies, particularly in linear and time-invariant systems.

PREREQUISITES
  • Understanding of transfer functions in control systems
  • Familiarity with the Laplace transform and Fourier transform
  • Knowledge of linear system theory
  • Basic concepts of time invariance in systems
NEXT STEPS
  • Study the properties of linear systems and their implications on system behavior
  • Learn about the implications of time invariance in system analysis
  • Explore the applications of the Fourier transform in signal processing
  • Investigate the relationship between impulse response and transfer functions
USEFUL FOR

Control engineers, signal processing professionals, and students studying linear systems and frequency response analysis will benefit from this discussion.

hilman
Messages
17
Reaction score
0
Can anybody explain to me briefly on why in a transfer function like G(s), we substitute s=jw such that it become G(jw) in order to find its gain value?

Thanks
 
Engineering news on Phys.org
You can explain it in a variety of ways, but I prefer this one, since it's quite general:

The only difference between the bilateral Laplace transform:
$$
G(s) = \mathcal{L}\{f(t)\} = \int_{-\infty}^\infty e^{-st} f(t)dt\\
$$
and the Fourier transform:
$$
H(\omega) = \mathcal{F}\{f(t)\} = \int_{-\infty}^\infty e^{-j\omega t} f(t) dt
$$
is the variable substitution ##s = j\omega##, i.e. ##H(\omega) = G(s)\left.\right|_{s = j\omega} = G(j\omega)##.

For some system with transfer function ##G(s)##, ##G(s)## is also its impulse response, which makes ##G(j\omega)## the Fourier transform of its impulse response.

More intuitively:
To find the gain of a linear system at some frequency ##\omega##, you could apply a sinusoidal input with frequency ##\omega## and unity amplitude, and observe the amplitude of the output signal, which directly gives you the gain of the system at ##\omega##.

An ideal impulse has components with unity amplitude at all frequencies, and thus ##G(j\omega)## "picks out" the gain and phase of the system at ##\omega## from its impulse response.

Makes sense?
 
  • Like
Likes   Reactions: hilman
Wow, I like your answer. I am still a beginner in this kind of things and I can understand most of your answer. But one question. What is exactly a linear system?
Thanks in advance
 
hilman said:
Wow, I like your answer. I am still a beginner in this kind of things and I can understand most of your answer. But one question. What is exactly a linear system?
Thanks in advance
a big thing in looking at systems like this is knowing if they are linear and if they are time invarient.

you should know these

Linear:: more or less to be a linear system the sum of two inputs have to equal the sum of the two outputs
x1(n)=y1(n)
x2(n)=y2(n)
so in order to be linear
x1(n)+x2(n)=y1(n)+Y2(n)

then continue that out to inf and -inf

for a system that is time invariant, delaying the input by a constant delays the output by the same amount.

given the system x(t)=y(t)

x(t-d)=y(t-d) for all values of t and d
 
donpacino said:
a big thing in looking at systems like this is knowing if they are linear and if they are time invarient.

you should know these

Linear:: more or less to be a linear system the sum of two inputs have to equal the sum of the two outputs
x1(n)=y1(n)
x2(n)=y2(n)
so in order to be linear
x1(n)+x2(n)=y1(n)+Y2(n)

then continue that out to inf and -inf
basically, this means if you graph the system, it will be a straight line.

for a system that is time invariant, delaying the input by a constant delays the output by the same amount.

given the system x(t)=y(t)

x(t-d)=y(t-d) for all values of t and d
 
Generally,

## s = \sigma + j \omega##

When ##\sigma = 0##, ##s = j \omega##

## \sigma ## is the Neper frequency. It tells us the rate at which the function decays (when it is negative).

## \omega ## is the radial frequency. It tells us the rate at which the function oscillates.
 
  • Like
Likes   Reactions: berkeman

Similar threads

  • · Replies 24 ·
Replies
24
Views
7K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K