No. Originally it's in 3D space with ##(x,y,z)##. The intersection is at ##x=2##. It is like cutting the whole thing along ##x=2##.
That does not change. But once you have cut it, there is no ##x## anymore. However, you must not forget ##x=2## if further investigations on the original surface would be made, e.g. by comparing the result with a cut at another ##x##.
As long as the calculations take place with ##x=2## fixed, you may substitute all ##x## by ##2## as you did and forget (for the moment) that there is an ##x## at all. But it stays ##x=2##. We simply do not consider it.By looking only at the plane, our cut, there is no ##x## anymore. You can think of it as a parabola with an ##y-## and ##z-## axis. On top of this parabola drawing you note "##\text{Intersection along }x=2##" as its label. Or the more complicated way in a 3D picture like yours, with the ##x-##coordinate ##2##. (As you also already mentioned in your first post.)