Why the inner product of two orthogonal vectors is zero

flyerpower
Messages
46
Reaction score
0
Why is the inner product of two orthogonal vectors always zero?

For example, in the real vector space R^n, the inner product is defined as ||a|| * ||b|| * cos(theta), and if they are orthogonal, cos(theta) is zero.
I can understand that, but how does this extend to any euclidean space?
 
Last edited:
Physics news on Phys.org
The inner product is just the amount that one vector extends in the direction of the other - it's how far one arrow "leans over" the other. If they are orthogonal, then they don't lean over each other at all. That's what "orthogonal means - they have zero extent in each other's directions.

This generalizes to many dimensions because each vector defines a direction in that space and the other one may have some lean in that direction.

Algebraically, if u and v are vectors, then their scalar product is defined as u^t \cdot v - in terms of components in an n-D basis that would be:

\left ( u_1,u_2, \ldots ,u_n \right ) \left (<br /> \begin{array}{c}<br /> v_1\\ v_2 \\ \vdots \\ v_n<br /> \end{array}\right )

Try it for any two orthogonal vectors ... it's obvious for any two basis vectors...

\left ( 1,0, \ldots , 0 \right ) \left (<br /> \begin{array}{c}<br /> 0\\ 0 \\ \vdots \\ 1<br /> \end{array}\right )

see?
 
Last edited:
Thank you, that's the kind of answer i was looking for :)
 
No worries - I edited to add another kind of answer while you were replying.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top