pstq
- 9
- 0
Hi all!
I have to show:
\sqrt{(j \pm m ) (j \mp m+1} <j_1 j_2 m_1 m_2 | j_1 j_2 j m\mp 1 > = \sqrt{(j_1 \mp m_1 ) (j_1 \pm m_1+1} <j_1 j_2 m_1 \pm1, m_2 | j_1 j_2 j m > +\sqrt{(j_2 \mp m_2 ) (j_2 \pm m_2+1} <j_1 j_2 m_1 , m_2 \pm1 | j_1 j_2 j m >
Wigner 3-j symbols are related to Clebsch–Gordan coefficients through
\begin{pmatrix}<br /> j_1 & j_2 & j_3\\<br /> m_1 & m_2 & m_3<br /> \end{pmatrix}<br /> \equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle
j_3=j, m_3=m
I've tried to put each term <j_1 j_2 m_1 \pm1, m_2 | j_1 j_2 j m > and <j_1 j_2 m_1 , m_2 \pm1 | j_1 j_2 j m > on the matrix form , but I don't know how i can get the square roots, any idea?
thanks in advance
Homework Statement
I have to show:
\sqrt{(j \pm m ) (j \mp m+1} <j_1 j_2 m_1 m_2 | j_1 j_2 j m\mp 1 > = \sqrt{(j_1 \mp m_1 ) (j_1 \pm m_1+1} <j_1 j_2 m_1 \pm1, m_2 | j_1 j_2 j m > +\sqrt{(j_2 \mp m_2 ) (j_2 \pm m_2+1} <j_1 j_2 m_1 , m_2 \pm1 | j_1 j_2 j m >
Homework Equations
Wigner 3-j symbols are related to Clebsch–Gordan coefficients through
\begin{pmatrix}<br /> j_1 & j_2 & j_3\\<br /> m_1 & m_2 & m_3<br /> \end{pmatrix}<br /> \equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle
j_3=j, m_3=m
The Attempt at a Solution
I've tried to put each term <j_1 j_2 m_1 \pm1, m_2 | j_1 j_2 j m > and <j_1 j_2 m_1 , m_2 \pm1 | j_1 j_2 j m > on the matrix form , but I don't know how i can get the square roots, any idea?
thanks in advance