Wigner Matrix or Wigner D-Matrix?

  • Thread starter Thread starter TheDestroyer
  • Start date Start date
  • Tags Tags
    Matrix Wigner
TheDestroyer
Messages
401
Reaction score
1
Hello guys,

I'm reading the attached article, and I found there the Wigner Matrix, the first equation in the second page... is that the Wigner D-Matrix? I really got lost in that. It doesn't look like the Wigner D-Matrix I see everywhere, and it's not the so-called random matrix... anyone knows what that really is? please explain!

Thank you for any efforts.
 

Attachments

Physics news on Phys.org
It's not the Wigner D-matrix from the representation theory of SU(2), but the matrix of the Wigner function from quantum transport equation.
 
Thank you for your reply.

Can that be found in some book? I don't know where to read about that.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top