colorSpace said:
My first scan of your response indicates that it is very vague and general, where I am asking specific questions.
Your model doesn't seem to be worked out in detail yet, and I expect that is where its limitations will show up. It is those details that I had doubts about from the beginning, and I don't see a specific "solution" that answers those doubts. It still sounds like a claim that you think a solution should be possible, rather than that you actually have one. As is probably obvious, I don't understand Hilbertspace so I can't discuss with you on that level.
It seems to me that to every technical explanation I try to give, you object that it is "vague and general" and doesn't answer your question, while I don't see how I can be more precise and clear (in the technical way) than I've been.
The point *I* am trying to make clear, which is what was at the origin of this discussion, is that the MWI view allows quantum theory to be seen as having the property of "locality", as this was put in doubt.
In fact, I even go further, and I try to convey the idea that the MWI view does nothing else but REVEAL the workings of the quantum formalism which everybody uses, but who might not be aware of it.
I'm trying to demonstrate that the machinery of the quantum formalism (the hilbert space formalism, with the kets, the unitary evolution operators and all that) CAN be formulated in a way which is "local", although this is admittedly a clumsy way of doing, and the global formalism which incorporates all these manipulations algebraically does it in a much more elegant way, and that it is only upon EXIT of the quantum formalism that explicitly non-local things seem to happen. This exit is what is the quantum-classical transition in Copenhagen for instance.
Indeed, from the moment that there are classical outcomes to mesurements, Bell's theorem is quite restrictive. Apart from superdeterminism, there's not much hope to have a local, classical explanation to the outcomes of quantum theory. That's what comes out of Bell's theorem.
But the point is that *forcing an outcome* is *outside of the strict quantum formalism*, and that the quantum formalism ITSELF doesn't suffer this non-locality. MWI only *reveals* this. It doesn't impose anything, but because MWI doesn't *require* the forcing of an outcome (not more so than the unitary quantum formalism), it can escape Bell's theorem. It isn't MWI per se which does this, it is because MWI doesn't ADD something to the quantum formalism. As such, it allows one to analyse in more detail exactly how, at no point, "information at a distance" IS STRICTLY REQUIRED to obtain the apparent results of EPR experiments. So I don't have to build a *nice* model to show this, I only have to show that *A* model exists, which can carry around enough information LOCALLY, so that this local information is enough to obtain the EPR outcomes just as "non-local" quantum mechanics predicts.
However, I want to point out that this is not a local hidden variable theory as understood in Bell's theorem, simply because in Bell's assumption, there ARE objective and unique outcomes at Alice and Bob, while in MWI, we don't assume that. In MWI, BOTH outcomes "happen" at both sides, and the correlations only appear when we combine the "messengers" from both sides. It is the excape route from Bell's theorem.
So I've tried to show you that it is possible to have "local buckets of information" which travel with the particles, and which contain all that is necessary to calculate the correlations as observed in EPR experiments. These local buckets do in fact nothing else but carry around the necessary information to reconstruct the relevant parts of the global wavefunction, and the "treatments" (the "dynamics") they undergo is equivalent to the algebraic operations such as sums of vectors, distributivity and so on which is inherent to the operations in global hilbert space.
The fact that I can show you that such a "bucket" can exist and does what it has to do, is sufficient to show that the global quantum dynamics has the property of locality. Whether you LIKE this model or not, or whether you find it "plausible" or not, is really not an issue! It is the mathematical existence of the model which proves that the global quantum dynamics has a mathematical property of locality. It is a *mathematical proof* of a mathematical property. You are not supposed to argue about the elegance of the elements used in a proof, right ?
Of course, I assume a certain technicality on your side too, in order to be able to have a meaningful discussion.
So what I showed was that:
To an entangled state of a couple of subsystems, which is globally represented by an algebraic expression of the kind:
|u+>|v-> - |u-> |v+>
we CAN associate LOCALISED states, to the u-system and to the v-system individually, which contains:
1) the state information of course (|u+> and |u-> for the u-system), which is nothing else but elements in the hilbert space of states associated to the system U, and which we can imagine "being carried along with the U-system" (it is actually more subtle than this, but let us for the moment assume that the spatial degrees of freedom are as of yet classical - I can do it in more generality but you will be more lost)
2) but also extra information (the "bucket") which is encoded in the algebraic expression |u+>|v-> - |u-> |v+>.
It is of course number 2) which is crucial here, because in order to show locality, we cannot use the global wavefunction anymore. So we have to show that there CAN exist local structure of information which carry the same information and which act in the same way as does the global wavefunction.
You object to the amount of information here, but that's what I tried to say: the superposition principle, which requires that the hilbert space of a combined system is the TENSOR PRODUCT and not just the sum of the spaces of the subsystems, makes that the hilbertspace of a combined system is MUCH BIGGER than the set product of the subsystems. It is exactly this which is expressed by the possibility of entangled states: namely that it is not sufficient to have just "the state of A and the state of B", but that we can find A LOT OF COMBINATIONS of these "product states". This is encoded in the algebraic expression of the entangled state, and must hence be ENCODED LOCALLY if we want to find an equivalent local formulation. As there are a lot of possibilities (as this product hilbert space is very big), you shouldn't be surprised that this concerns a lot of information! But the point is that it is POSSIBLE to encode this locally.
We do this by saying that to the |u+>|v-> - |u->|v+> state (global state), we have that the u+ state "has to know" that it was paired up with a v- state of the v system, and that it had amplitude +1. We also have to add to the state v- that it was paired up with the u+ state, and that it had amplitude +1. Similar for the u- state, it has to know that the u- state was paired up with the v+ state of the v-system, and that it had amplitude -1.
This is the information we have now to include into the "bucket" that goes with the u-system. The u-system has hence as a "local description":
a u+ state with an indication A (label) shared with the v-system and amplitude +1
a u- state with an indication B (label) shared with the v-system and amplitude -1
The v-system has as a local description:
a v+ state with indication B shared with the u-system and amplitude +1
a v- state with indication A shared with the u-system and amplitude -1
I think I showed that this entangled state could only come about by an interaction of the u and the v-system when they were in the same locality.
From the moment that the u-system and the v-system separate, they carry this information along, and from that moment on, an action on the v-system will not be able to alter the information carried with the u-system. That is what is the requirement of locality.
Now, when Bob interacts with the u-system, he only has access to the information carried in the u-bucket (and his own) to determine the new state of himself and of the u-system.
If Bob has an analyser in a certain direction, then locally, at Bob's, where we also have the u-particle, using only the information in the u-bucket, we see that we can turn this into:
Bob interacting with the u+ state which becomes:
x |bobAC+> |u++AC> + y |bobAD->|u--AD>
and bob interacting with the u- state which becomes:
-y |bobBE+> |u++BE> + x |bobBF-> |u--BF>
This means that the "bob bucket" now becomes:
a bob+ state with labels A (from u, shared with v, amplitude +1) and C (shared with u), amplitude of C is x
a bob- state with labels A (from u...) and D (shared with u), amplitude of D is y
a bob+ state with labels B (from u shared with v, amplitude -1) and E (shared with u), amplitude of E is -y
a bob+ state with labels B and F...
The u-bucket becomes:
a u++ state with labels A (shared with v, amplitude +1) and C (shared with bob) amplitude is x
a u-- state ...
etc...
This is simply the local buckets which encode for the global state:
(x |bobAC+> |u++AC> + y |bobAD->|u--AD> ) |v-A>
- (-y |bobBE+> |u++BE> + x |bobBF-> |u--BF>) |v+B>
but the important part is that we could constitute the new bob and u buckets with just the information that was locally available at bob's when he did his measurement: that is, we only needed the u-bucket, and we only needed the local axis of bob wrt the states in the u-bucket.
It is exactly this which we can do at ANY interaction: we can, using the local information buckets of the systems present at a certain location, define the NEW buckets after interaction which determine the new states and the new amplitudes. We only need the contents of the buckets which are locally present to do this, and nevertheless, at any moment, we can transform them such that they remain at all moments "in sinc" with what one would have obtained using the global wavefunction.
When alice meets bob, the information in the alice bucket is then combined with the information in the bob bucket to find out what states can appear, with what amplitudes. It can happen that certain amplitudes become 0, such as xs - yr. But this is established by just combining the local information buckets carried along with each subsystem.
It should be clear that this way of handling things is *entirely equivalent* to the global wavefunction dynamics. As such, we have shown that the global wavefunction dynamics has the property of locality.