Work and rotational Kinetic Energy

AI Thread Summary
To stop a 32.0 kg wheel rotating at 280 rev/min in 15 seconds, the necessary angular acceleration must be calculated first. The work done to stop the wheel is related to the change in its rotational kinetic energy, which can be determined using the formula W = (1/2)I(ω_final)^2 - (1/2)I(ω_initial)^2. The moment of inertia for the thin hoop is I = mr^2, resulting in I = 46.08 kg*m^2. The discussion emphasizes the importance of understanding the relationship between work, torque, and angular displacement in solving the problem.
frig0018
Messages
5
Reaction score
0

Homework Statement


A 32.0 kg wheel, essentially a thin hoop with r=1.20 m is rotating at 280 rev/min. It must be brought to stop in 15.0 s. How much work must be done to stop it?


Homework Equations

/

The Attempt at a Solution


I=mr^2=46.08 kg*m^2
W=(1/2)I\omegaf^2 - (1/2)I\omegai^2
W=\tau(\Delta\theta)
\tau=I\alpha
Rev in 15 sec = 70 rev => 140\Pi radians in 15 sec.

I'm not sure which equation(s) to use. I've tried plugging numbers into all of them and getting stuck or wrong answers. Thanks!
 
Physics news on Phys.org
Remember, work is a change in kinetic energy. Do you know the formula for kinetic energy of a rotating object?
 
i thought it was
W = delta K = 1/2(I)(omega final)^2 - 1/2(I)(omega initial)^2...?
or do i use the formula
W= (integral from theta initial to theta final) torque d-theta?
 
… one step at a time …

frig0018 said:
A 32.0 kg wheel, essentially a thin hoop with r=1.20 m is rotating at 280 rev/min. It must be brought to stop in 15.0 s. How much work must be done to stop it?

Hi frig0018! :smile:

First step: what angular acceleration is needed to stop it in 15 s? :smile:
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top