Work done by gas expanding into a cylinder+piston system

AI Thread Summary
The discussion centers on the work done by gas in two scenarios: quasi-static expansion against atmospheric pressure and rapid expansion with no heat exchange. In scenario A, the work is calculated using a constant pressure approximation, leading to a straightforward formula. In scenario B, the work is derived from a more complex relationship involving the gas's pressure and volume changes, suggesting a faster, potentially explosive expansion. The participants debate whether the work done in both scenarios can be considered the same despite differing paths in PV space. Ultimately, the conclusion is that while the endpoints may be identical, the nature of the expansion affects the work done.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
A thin-walled metal container of volume V contains a gas at high pressure.
Connected to the container is a capillary tube and stopcock. When the stopcock is
opened slightly, the gas leaks slowly into a cylinder equipped with a nonleaking,
frictionless piston, where the pressure remains constant at the atmospheric value $P_0$.
(a) Show that, after as much gas as possible has leaked out, an amount of work $P_0(V_0-V)$
has been done, where $V_0$ is the volume of the gas at atmospheric pressure and
temperature.
(b) How much work would be done if the gas leaked directly into the atmosphere?
Relevant Equations
.
I will summarize briefly my reasoning for both letters, since the answer is immediately after that:

A) The work is quasi-static, and the pressure is approximatelly constant and equal to the atmospheric pressure, so the works is $$W = -p\int dV = -p_{0} (V_{0}-V)$$
B) The work is fast, fast enough that no heat flows thought the gas, so that the work is $$W = -\int p dV = -\int_{V_i}^{V_f} p_i (V_i)^{\gamma} dV /V^{\gamma}$$ $$ P_i V_i^{\gamma} / P_o = V_f ^{\gamma}$$

What do you think? I am almost sure it is wrong, so i am posting here to get any help on letter b
 
Physics news on Phys.org
If your system is the gas, why do you feel that the answer to B is different from A?
 
Chestermiller said:
If your system is the gas, why do you feel that the answer to B is different from A?
As i said, because the first one "leaks slowly", and nothing has been said about the second one, so i suppose it is more "explosive".

I have questioned myself also if the work is the same, but i was not able to argue why it should be. Even so the final points on (PV space) is the same, the path could be different, resulting in different work.
 
The question implies that the gas is still leaking slowly in case B, but into the atmosphere instead of into a cylinder and piston.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top