Work/Energy and Impulse/Momentum

  • Thread starter Thread starter Bullwinckle
  • Start date Start date
AI Thread Summary
The discussion explores the relationship between work/energy and impulse/momentum through mathematical derivations, emphasizing the importance of integrals over derivatives. It highlights that while splitting derivatives can provide intuitive insights, it lacks rigor and may lead to confusion. The process of calculating work as a line integral is detailed, showing that it relies on parametrization of the trajectory and the dot product of force and velocity. The conversation also addresses the validity of using different parametrizations for line integrals, reinforcing that the splitting of derivatives serves primarily as a mnemonic device. Ultimately, the discussion underscores the need for a solid understanding of the mathematical foundations behind these physical concepts.
Bullwinckle
Messages
10
Reaction score
0
If we take F=ma and multiply both sides by dt, we get

Fdt = ma dt

And then:

Fdt = mdv

And then:

Impulse = change in momentum.

OK; I get that.
I get a similar process for Work/Energy multiplying F=ma by ds on both sides as follows

Fds = ma ds

And using a ds = v dv to get

Fds = m v dv

Work = change in kinetic energy.

Now I have been coming to learn that it is not wise to split the derivative
For example the form: ads = vdv is possible in 1D.
And even then, it is fairly contorted: one should not, in a pure sense, split the derivative.

(I have gotten wind of issues like force is a one form and that explains the ds... can we avoid that advanced stuff for now?)

Is it possible get to the core of work/energy and impulse/momentum without splitting the derivative?
 
Physics news on Phys.org
The sppliting of derivatives is useful trick for intuitively get the concepts around. However, I do not find it rigorous and I prefer just doing the integral.
For the Work/Kinectic energy relation:
The work is a line integral and it must be calculated via a parametrization of the curve (the trajectory). Our parametrization is simply \vec{r}(t). This vector line integral is calculated integrating over the domain of parameter t \in [t_0,t_1] the function multiplied by the derivative/tangent vector (which happens to be the velocity).
Work = \int_{Path} \vec{F}·d\vec{r}=\int_{t_0}^{t_1} \vec{F} · \vec{v} dt = \int_{t_0}^{t_1} m\vec{a} · \vec{v} dt=\int_{t_0}^{t_1} m \frac{d\vec{v}}{dt} · \vec{v} dt = \int_{t_0}^{t_1} \frac{d}{dt}[\frac{1}{2} m \vec{v} · \vec{v}] dt = \int_{t_0}^{t_1} \frac{d}{dt}[\frac{1}{2} m v^2] dt = \frac{1}{2} m v^2(t_1) - \frac{1}{2} m v^2(t_0) = \Delta E
And this is valid for arbitrarily close values of t_0,t_1.

For the impulse I cannot help you since I have a very simplistic view of the concept. Since it is the change over time of the momentum (i.e. the derivative)
\vec{I} = \frac{d\vec{p}}{dt} = m\frac{d\vec{v}}{dt} = m\vec{a} = \vec{F}
(whenever tha mass is constant, which is pretty usual in classical mechanics)
 
Lebesgue said:
Work = \int_{Path} \vec{F}·d\vec{r}=\int_{t_0}^{t_1} \vec{F} · \vec{v} dt = \int_{t_0}^{t_1} m\vec{a} · \vec{v} dt=\int_{t_0}^{t_1} m \frac{d\vec{v}}{dt} · \vec{v} dt = \int_{t_0}^{t_1} \frac{d}{dt}[\frac{1}{2} m \vec{v} · \vec{v}] dt = \int_{t_0}^{t_1} \frac{d}{dt}[\frac{1}{2} m v^2] dt = \frac{1}{2} m v^2(t_1) - \frac{1}{2} m v^2(t_0) = \Delta E
And this is valid for arbitrarily close values of t_0,t_1.

OK, so are you not also stumbling over this:

dr = v dt (to progress from the second to third term)

Is that not taking this: dr/dt = v

And multiplying by dt?

Now I feel I am back at square-1

Or, are your words "parametrization" the key. Is this allowed in a parametrization?
Is there something about BEGINNING with dr = vdt on which I should focus?
 
Last edited:
The d\vec{r} in the line integral is pure notation, a mere symbol. It does just means that the integral is a certain type integral: a line integral. Line integrals of scalar or vector functions/fields are mathematically completely different objects from typical integrals over subsets of \mathbb{R}^n (they use a different measure).

https://en.wikipedia.org/wiki/Line_integral#Definition_2

I wouldn't matter if a chose a parametrization of the trajectory in which the particle travels the same path but at a different speed. As you can see, the definition(*) given by Wikipedia tells us that computing line integrals of vector fields requiere:
  • A parametrization (physicist usually use the typical \vec{r}(t)).
  • The derivative of that parametrization function (with our choice, it'll be just \vec{v}(t)). The splitting of derivatives gives you an intuitive mnemotecnic way of remembering this.
Then you just calculate the dot product of the \vec{F} field and the tangent vector and integrate it over the parameter interval (in most of our cases will be the time interval). But we could have just used another parametrization of the same path (for example, instead of using time, we can use the arclength parameter).

This is mainly the theory that is behind the typical splitting of derivatives. It is valid to use but keep in mind it is just a way of remembering how to calculate line integrals. Mathematically, the splitting of derivatives makes no sense.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top