Work required to pump water out of conical tank

akbar786
Messages
18
Reaction score
0

Homework Statement


Find the work done in pumping all the water out of a conical reservoir of radius 10ft at the top and altitude 8ft if at the beginning the reservoir is filled to a depth of 5ft and the water is pumped just to the top of the reservoir.

Homework Equations


None

The Attempt at a Solution


This is my work so far. I am taking the integral from -8 to -3. The top center of the cone is on (0,0). I have the integral going from -8 to -3 of (100 pi) *(62.4) (0-y) dy. The 100 is from the radius squared. The (0-y) is the distance the water has to travel up any given y. Any help?
 
Physics news on Phys.org
You want to integrate pi*r^2*(-y)*dy from -8 to -3, right? So you want to express r as a function of y, don't you? Why are you using 100, the radius squared at the top and where did 62.4 come from?
 
Dick said:
You want to integrate pi*r^2*(-y)*dy from -8 to -3, right? So you want to express r as a function of y, don't you? Why are you using 100, the radius squared at the top and where did 62.4 come from?

62.4 is the density of water the teacher wanted us to use.I decided to keep all my numbers positive which will also make it much easier to integrate.Here is my new integral with expressing r as a function of y. 62.4*pi * integral from 0 to 5 of ((5/4y)^2) * (8-y)
8-y is the distance the water has to travel given the generic y and on each of those y's the radius will be 5/4 of the y term. Is this right? I am solving for work and 62.4 is my density for water
 
akbar786 said:
62.4 is the density of water the teacher wanted us to use.I decided to keep all my numbers positive which will also make it much easier to integrate.Here is my new integral with expressing r as a function of y. 62.4*pi * integral from 0 to 5 of ((5/4y)^2) * (8-y)
8-y is the distance the water has to travel given the generic y and on each of those y's the radius will be 5/4 of the y term. Is this right? I am solving for work and 62.4 is my density for water

Now that looks right to me. Putting the origin at the bottom does make it much less confusing.
 
Awesome, thanks a lot for your help.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top