3.14lwy
- 15
- 0
if
Xn = x^n + x^(n-2) + x^(n-4) + ... + 1/[x^(n-4)] + 1/[x^(n-2)] + 1/(x^n)
(where n is a non-negative integer)
then ,
X1 = x + 1/x
X3 = x^3 + x + 1/x + 1/(x^3)
What s the value of X2??
X2 = x^2 + x^0 + 1/(x^2) = x^2 + 1 + 1/(x^2)
or X2 = x^2 + x^0 + 1/(x^0) + 1/(x^2) = x^2 + 1 + 1 + 1/(x^2)
?
Xn = x^n + x^(n-2) + x^(n-4) + ... + 1/[x^(n-4)] + 1/[x^(n-2)] + 1/(x^n)
(where n is a non-negative integer)
then ,
X1 = x + 1/x
X3 = x^3 + x + 1/x + 1/(x^3)
What s the value of X2??
X2 = x^2 + x^0 + 1/(x^2) = x^2 + 1 + 1/(x^2)
or X2 = x^2 + x^0 + 1/(x^0) + 1/(x^2) = x^2 + 1 + 1 + 1/(x^2)
?