What is Circular motion: Definition and 1000 Discussions

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves circular motion of its parts. The equations of motion describe the movement of the center of mass of a body. In circular motion, the distance between the body and a fixed point on the surface remains the same.
Examples of circular motion include: an artificial satellite orbiting the Earth at a constant height, a ceiling fan's blades rotating around a hub, a stone which is tied to a rope and is being swung in circles, a car turning through a curve in a race track, an electron moving perpendicular to a uniform magnetic field, and a gear turning inside a mechanism.
Since the object's velocity vector is constantly changing direction, the moving object is undergoing acceleration by a centripetal force in the direction of the center of rotation. Without this acceleration, the object would move in a straight line, according to Newton's laws of motion.

View More On Wikipedia.org
  1. M

    What is Kepler's Formula and How is it Used in Circular Motion and Gravitation?

    Using Kepler's Formula, I tried to solve for the answer but was told that it's incorrect.
  2. Like Tony Stark

    Tension and reaction force in circular motion

    Hi I'm having trouble to understand the centripetal force in a rotating rod with a mass in its end. When ##90°<\theta<270°##, the centripetal acceleration is produced by the tension, which counteracts the radial component of the weight. But what happens when ##\theta<90°## or ##\theta>270°##...
  3. AN630078

    Circular Motion of a Cyclist and a Car going around a bend in the road

    Question 1: So we are given three variables; Mass=90kg Angle to the vertical = 20 degrees Speed = 10 ms^-1 There is not enough information to rearrange the formulas for centripetal force or acceleration in terms of r to find the radius. However, I have a attached a free body diagram of a...
  4. B

    Spring-mass system in circular motion has a maximum angular speed?

    and this is my solution for question (d), it may seems that $$R=(k)/(k-m\omega^2)R_0$$ so that $$\omega ≠ \omega_i =√(k/m)$$ but $$\omega_c <\sqrt{k/m}$$ is always true, ##\omega_i## corresponds to the limit case when ##F_max## is infinitely large Besides, I don't know other Physics prevents...
  5. G

    Mechanics Circular Motion Question

    Part (i) *Pink represents mark scheme method Part 2 However I am still confused on the diagram.
  6. RemotePhysics

    Require help with angular velocity and people flying off the planet

    My solutions (attempts) : a> w=v/r | r=6.35x10^6m | therefore V=7.04x10^-5 m/s b> speed of rotation is faster at the equator than the pole as w=v/r. As w remains constant, as r increases towards the pole V has to decrease. c> F = W - R d> Stuck here. I presume that I have to use the equation...
  7. RemotePhysics

    Futher Mechanics: Circular Motion of a Car Going Around a Banked Turn

    Below is my working out. If you could have a look at my answers and see if they are correct and then advice me on how to improve my solutions for Parts I and II, and how to answer F and G with the given information. Thanks in advance! Parts aand b are diagrams so please refer to the attached...
  8. G

    Is Gravity the only force doing work on a roller coaster cart?

    Why I think gravity *is* the only force doing work on the rider: 1) The only forces acting on the rider are gravity and the normal force. Broken down into their component vectors, we have: -> The component of the force of gravity moving parallel to the rider's direction of motion -> The normal...
  9. G

    To find the relative velocities of linear and circular motion

    Could I please ask for help regarding the final part of the following question: It is the very last part, to find v in terms of u. So I have that the velocity of the midpoint of XY is: V_m = (u/2) i + (u/2) j I let the position vector of P be: r_p = cos(wt) i + sin(wt) j (w = angular...
  10. Adesh

    How do we provide centripetal force in this situation?

    Situation: Let’s say we have a wire bent into a circular shape, there lies a bead through the wire and it can slide through it. The wire is kept in vertical plane and is swung along the axis AB. My question : How the centripetal force is provided to the bead? The bead will go into a...
  11. R

    Exploring Circular Motion: Centripetal Acceleration

    Hey guys, Theres something I've been confused about when looking at circular motion. When does an object have just centripetal acceleration as the acceleration of the object, if ever. I think that the acceleration vector is between the centripetal and tangential acceleration when an objects...
  12. LCSphysicist

    Analyzing Forces in Circular Motion: Finding Equilibrium in a Spring System

    https://www.physicsforums.com/attachments/262043I got here, i think that the component y N will balance the mg force; the other componente of N will be divided in two, one to balance the force, and other to be the centripal result, but i don't know how relate to each other
  13. hobbes1235

    [Grade 12 Physics] Circular/gravitational motion

    Diagram for question 1: I know the mass, I need Fg. My work: Main equation: g = Fg/m I need to find Fg. Fg= Fc - Fn [Fn = 21 N Fc = ?] {I need to find Fc.} Fc = ma --> Fc = (mV^2)/ r [Mass = 1.3kg V = ? r = 0.70] {Now I need the velocity at that point where Fn = 21 N (the top of the...
  14. Adesh

    What actually is the centripetal acceleration formula?

    Centripetal force is defined as the force causing the body to follow a curved path, acting towards the center and always orthogonal to the direction of motion. For uniform circular motion the formula for centripetal acceleration is $$a_c = \frac{v^2}{r}$$. But my understanding of centripetal...
  15. H

    Circular motion, friction and forces

    I am not really sure how to go about this. I have been sick for a couple of weeks and fallen behind a bit. Can anyone help me out please? Thank you
  16. stephenklein

    Deriving the Relativistic Transverse Doppler Effect (Circular Motion)

    **I realize some of my inline math delimiters '\(' and '\)' are not acting on the text for some reason, and it looks clunky. I spend 20-30 minutes trying to understand why this is, but I can't. My limited LaTeX experience is in Overleaf, and these delimiters work fine in that compiler. My...
  17. Erucibon

    Circular motion and g forces in rollercoaster

    I my attempt, I set the drop height to 20m and using conservation of energy, i calculated the speed at the bottom. Calculating centripetal acceleration, if the radius of the circle is less than 10m then the g force is greater than 5, if equal to 10m the velocity at the top is 0 and there is 0...
  18. mmaismma

    How to calculate hinge forces?

    I have solved problem (A). But I couldn't solve problem (B). Here is my attempt:
  19. T

    AP Physics 1 Help? Centripetal motion/Kinematics/Friction problem

    I think I have solved the first three, and only really need help on question four. For number one, I used Fc = (Mv^2)/R and just rearranged it for velocity so I ended up with v = sqrt(ac * R) For number 2 I used Ff = Fn*mu and got Mg*mu = Ff For number 3 I used w = Ff*d and got w = -Mg*mu*l...
  20. F

    Horizontal Circular Motion With Lagrange

    In the situation described in the problem, the mass is moving on a horizontal circular path with constant velocity. Wouldn’t this make L and U both constant? Then the Lagrange equation would give 0 = 0, which isn’t what I’m looking for. Any help would be appreciated.
  21. ela12aj

    In circular motion - centripetal acceleration is never there

    So far what we know about the circular motion is that an object moving in a circle experiences a force towards the center of the circle and as a result accelerates towards this center. But we also know that an object always moves in the direction of resultant force - if two tractors moving at...
  22. L

    Trouble understanding vector hat notation - Circular Motion

    I'm new to classical mechanics. I've done enough work with vectors to get the basics. But, I'm having trouble understanding the notation on this MIT presentation I found on circular motion: http://web.mit.edu/8.01t/www/materials/Presentations/Presentation_W04D1.pdf On slide 23, for example, I...
  23. brotherbobby

    How Does Braking Compare to Turning in Avoiding Collisions?

    1. For the car to apply brakes, we have ##v^2=2ar⇒a=\frac{v^2}{2r}=μg\;\;[ma=μmg]⇒v=\sqrt{2μgr} ## 2. For the car to go in a circle ##\frac{mv^2}{r}=μmg\Rightarrow v=\sqrt{\mu gr}##. We find from above that the maximum velocity ##v## possible to avoid a collision is ##\sqrt{2}## times as much...
  24. ColoradoGrrrl

    Circular Motion: Write expression for the period in terms of r and g

    I'm not sure if I'm doing this right as far as coming up with the equation they are asking for. I feel the question is poorly worded and the formatting makes their equation notation difficult to understand. Any insight would be very helpful. This is my work so far:
  25. Phylosopher

    I Aberration of Light in Circular Motion: Does Distance Change?

    Simple as it sounds! Usually people derive aberration of light using linear motion, not circular motion. When aberration happens in linear motion, one would expect distance between the source and the observer to change. But, in circular motion, the path light takes in the circular motion, in...
  26. S

    Static Friction in Circular Motion

    A) So we are given the radius and the coefficient of static friction as 3.0 m and 0.28 respectively. I know that in the vertical direction the only forces acting are the normal force and the gravitational force. Therefore, the normal force is equal to mg because net force is equal to 0, due to...
  27. Like Tony Stark

    Finding angular velocity for a rope to be cut

    I wrote Newton's equations for each body (I took ##x## as the axis aligned with the tension) ##m_1##: ##x)f*_1 -T_1+T_2=0## Where ##f*_1=\omega ^2 r_1## ##m_2## ##x)f*_2 -T_2=0## ##x)f*_2=T_2## Where ##f*_2=\omega ^2 r_2## I wrote that ##T_2=1100 N## and solved for ##\omega##, and I got...
  28. S

    Using Newton's Laws: Friction, Circular Motion, Drag Forces

    Here is my attempt at setting up the equation: I set up the equation to find the acceleration of the box: F-Ffr= m*a after finding the acceleration, I can use the acceleration and plug it in the formula v^2=(v0)^2+2*a(x-x0), which will get me the value of (x-x0)The solution sheet says that F...
  29. jisbon

    Circular motion with kinematics

    My working: ##s=\int v## ##v= \sqrt{\frac{a_{c}}{r}}=\sqrt{\frac{a_{c}}{\frac{4}{2t+2}}}## ##s= \int_{0}^{2} \sqrt{\frac{2}{\frac{4}{2t+2}}}## My final answer seems to be wrong. Any ideas? Cheers
  30. jisbon

    Circular motion -- Find the angular velocity at t=3

    Hi everyone. Do correct me if I am thinking wrongly. So to find angular velocity, won't I just have to integrate angular acc = 2t, which means angular velocity = t^2? Hence, won't the answer be 3^2=9? The answer seems to be 5.43 :/ Thanks
  31. Shivam

    Calculating Safe Velocity: Why Is 4th Option Incorrect?

    1). I calculated maximum safe velocity using the equation - V(max)=√200x10x0.2 =20m/s So the speed at which car is traveling is greater than the safe speed.. So the car should skid. So why 4th option is not correct ?
  32. S

    Vertical circular motion with accelerating centre

    I can do the problem if the centre is fixed. The steps are: 1) Assuming tension in the string is zero at the top most position, we calculate the velocity at top most position by mv2/R = mg 2)Now, we simply apply mechanical energy conservation when the ball is at the top and bottom positions...
  33. M

    Calculate the tension in a rope attached to a ball in circular motion

    The solution to the problem simply states: "Use of mv^2/r = 2000. T = (2000 + 7500) = 9500N". I don't understand this solution. Nothing more is provided. I don't know how you are supposed to find the radius (in order to use the centripetal force formula) merely from the information provided...
  34. E

    Circular Motion Question: Change in Vector Angular Velocity

    Hi i am e-pie's brother and he let me use his account.Since $$\vec{\omega}$$ is always perpendicular to the plane.Shouldn't this be $$0^o$$?
  35. S

    How can I minimize uncertainty in circular motion experiments?

    Random error would be to do with not swinging the bung in a perfect circle so when I try to measure velocity, that would vary. Measurement of radius. How would I decrease percentage uncertainty? Use a smaller mass so that I get a larger radius so I can measure a longer length.
  36. C

    Relativity - energies of particles in circular motion

    Summary: What is energy of proton, deuteron and alpha particle in circular motion of the same radius. Hello, I have a problem. Here is the content of an exercise: In some experiment, proton with energy of 1MeV is in circular motion in isotropic magnetic field. What energies would have...
  37. R

    Rotational Circular Motion with fixed ends and a spinning button in the middle

    This button has fixed ends and the string is twirled and on the fixed ends there is hanging masses. I have found out that if string twirls are constant, the hanging mass is directly proportional to angular velocity squared. But I want to understand how that is derived. Could anyone please help...
  38. babaliaris

    Uniform Circular Motion: some help with the math proof?

    I can not understand why ##v_x = -|v|sin(θ)## and ##v_y = |v|cos(θ)## I'm asking about the θ angle. If i move the vector v with my mind to the origin i get that the angle between x'x and the vector in anti clock wise, it's 90+θ not just θ. So why is he using just θ? Does the minus in v_x somehow...
  39. Romain Nzebele

    How to calculate angular speed?

    Homework Statement A car initially traveling at 29.0 m/s undergoes a constant negative acceleration of magnitude 1.75 m/s2after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.330...
  40. Ariano AnnaG

    Circular motion of a rotational spring

    Homework Statement A child is playing with a spring (k=100000 N/m, Li = 0.5 m). One of his toys (m=0.5 kg) is attached to the further extremity. The child is rotating the spring above his head on a horizontal plane, with a uniform circular motion. What is the elongation of the spring? I’m not...
  41. D

    Radius of curvature of the trajectory of points A and B

    Homework Statement A cylinder rolls without slippage on a horizontal plane. The radius of the cylinder is equal to r. Find the radious of curvature of the trajectory of points A and B. Homework Equations Ciruclar motion equations. ##R=\frac{1}{C}## The Attempt at a Solution First I drew the...
  42. Hoophy

    Circular Motion With Constant Angular Acceleration

    Homework Statement Question: A 600 g steel block rotates on a steel table while attached to a 1.20 m-long hollow tube. Compressed air fed through the tube and ejected from a nozzle on the back of the block exerts a thrust force of 5.01 N perpendicular to the tube. The maximum tension the tube...
  43. Hoophy

    Uniform Circular Motion, Find the Tension

    IMPORTANT! TEXT IN GREEN HAS BEEN ADDED AND IS CORRECT TEXT IN RED HAS BEEN REMOVED AND IS INCORRECT 1. Homework Statement Question: An energetic father stands at the summit of a conical hill as he spins his 25 kg child around on a 5.7 kg cart with a 2.3-m-long rope. The sides of the hill are...
  44. T

    Circular Motion Application Question

    Homework Statement First problem: The speedometer in a car is driven by a cable connected to the shaft that turns the car's wheels. Will speedometer readings be more or less than actual speed when the car's whells are replaced with smaller ones? Second problem: Keeping in mind the concpet from...
  45. D

    Circular Motion Problem: Particle Velocity and Acceleration Calculation

    Homework Statement A particle A moves along a circle of radius ##R = 50 cm## so that its radius vector ##r## relative to the point O (Fig. 1.5) rotates with the constant angular velocity ω = 0.40 . Find the modulus of the velocity of the particle, and the modulus and direction of its total...
  46. P

    The Importance of Understanding Different Formulas in Uniform Circular Motion

    https://i.imgur.com/4nynNBg.png I cannot understand for the life of me why this problem doesn't just use T = 2πr/v to solve for the period to get T = 2π(Lsinβ)/v. Instead, it rearranges the formula for a(rad) = (4π^2R)/T^2 to solve for T, and arrives at a totally different answer, T =...
  47. S

    Tangential acceleration and centripetal acceleration

    a disc or radius r = 16cm starts spinning from rest with a uniform angular acceleration of 8.0 rad/s^2. at what time is its tangential acceleration twice the centripetal acceleration. i figured out the tangential acceleration is: Atan = α/R = 8 / .16 = 50 m/s^2 and the centripetal...
  48. Abdullah Wahid

    Perceived gravity in circular motion

    Is there any thing like perceived gravity in circular motion?? If I consider that it is in opposite direction to centripetal force, then both perceived gravity and centripetal should cancel each other and object should move in a straight line. Why does it nit happen?
  49. C

    Circular Constant Acceleration Formula

    A constant tangential force of magnitude 12N is applied to the rim of a stationary, uniform circular flywheel of mass 100kg and radius 0.5m. Find the speed at which the flywheel is rotating after it has completed 25 revolutions? I know that this can be done using work-energy. But since a...
Back
Top