What is Entropy: Definition and 1000 Discussions

Entropy is a scientific concept, as well as a measurable physical property that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory. It has found far-ranging applications in chemistry and physics, in biological systems and their relation to life, in cosmology, economics, sociology, weather science, climate change, and information systems including the transmission of information in telecommunication.The thermodynamic concept was referred to by Scottish scientist and engineer Macquorn Rankine in 1850 with the names thermodynamic function and heat-potential. In 1865, German physicist Rudolph Clausius, one of the leading founders of the field of thermodynamics, defined it as the quotient of an infinitesimal amount of heat to the instantaneous temperature. He initially described it as transformation-content, in German Verwandlungsinhalt, and later coined the term entropy from a Greek word for transformation. Referring to microscopic constitution and structure, in 1862, Clausius interpreted the concept as meaning disgregation.A consequence of entropy is that certain processes are irreversible or impossible, aside from the requirement of not violating the conservation of energy, the latter being expressed in the first law of thermodynamics. Entropy is central to the second law of thermodynamics, which states that the entropy of isolated systems left to spontaneous evolution cannot decrease with time, as they always arrive at a state of thermodynamic equilibrium, where the entropy is highest.
Austrian physicist Ludwig Boltzmann explained entropy as the measure of the number of possible microscopic arrangements or states of individual atoms and molecules of a system that comply with the macroscopic condition of the system. He thereby introduced the concept of statistical disorder and probability distributions into a new field of thermodynamics, called statistical mechanics, and found the link between the microscopic interactions, which fluctuate about an average configuration, to the macroscopically observable behavior, in form of a simple logarithmic law, with a proportionality constant, the Boltzmann constant, that has become one of the defining universal constants for the modern International System of Units (SI).
In 1948, Bell Labs scientist Claude Shannon developed similar statistical concepts of measuring microscopic uncertainty and multiplicity to the problem of random losses of information in telecommunication signals. Upon John von Neumann's suggestion, Shannon named this entity of missing information in analogous manner to its use in statistical mechanics as entropy, and gave birth to the field of information theory. This description has been proposed as a universal definition of the concept of entropy.

View More On Wikipedia.org
  1. mohamed_a

    I Problem regarding understanding entropy

    I was reading about thermodynamics postulates when i came over the differnetial fundamental equation: I understand that the second element is just pressure and last element is chemical energy, but he problem is i don't understand what is the use of entropy and how does it contribute to a...
  2. S

    A Why do we need a quantum correction for black hole entropy?

    Hey to all,... It is now generally believed that information is preserved in black-hole evaporation. This means that the predictions of quantum mechanics are correct whereas Hawking's original argument that relied on general relativity must be corrected. However, views differ as to how...
  3. Delta2

    I Is a Unified Field Theory the Key to Understanding the Universe?

    Is there any approach in any books out there, where we consider that in universe exists only one field, let it be called the Unified Field (UF), in which all of the known fields (gravitational, EM field, quark field, gluon field, lepton field, Higgs Field, e.t.c.) are just components (pretty...
  4. L

    Change of entropy in the Universe in a thermodynamic cycle

    (a) We first find that: ##T_A=\frac{P_A V_A}{nR}=\frac{1\cdot 10^5 \cdot 4}{40\cdot 8.314}K\approx 1202.7904 K##, ##\frac{T_B}{T_A}=\frac{\frac{P_B V_B}{nR}}{\frac{P_A V_A}{nR}}=\frac{P_B V_B}{P_A V_A}=\frac{P_A \frac{V_A}{2}}{P_A V_A}=\frac{1}{2}##, ##\frac{T_C}{T_B}=\frac{P_C...
  5. H

    A Is there a generalized second law of thermodynamics?

    Hi Pfs, There are different kinds of entropies. I discoved the free entropy. https://arxiv.org/pdf/math/0304341.pdf the second law says that the total entropy cannot decrease when time goes by. Is it always the same "time" for the different entropies? the author, Voiculescu, wrote articles...
  6. C

    B Is Entropy the Key to Understanding the Big Bang and the Fate of the Universe?

    I am a software trainer and know about as much Physics as I've been able to pick up from the BBC‘s occasional documentaries. I have never even taken a physics course in high school or college so I am an absolute lay-person here with what’s probably a very lay-person question… I was watching...
  7. Simobartz

    Entropy due to this irreversible process

    I think the solution is: $$dU=\delta W_{prop}$$ $$dU=TdS-PdV$$ $$dV=0$$ then, $$TdS=\delta W_{prop}$$ and so $$dS=dU/T$$ and by the way, it correct to say that, if the transformation between the initial and the final state would happen in a reversible way then the heat transfer could be...
  8. Philip Koeck

    A Definition of entropy for indistinguishable and distinguishable particles

    I have a rather general question about the definition of entropy used in most textbooks: S = k ln Ω, where Ω is the number of available microstates. Boltzmann wrote W rather than Ω, and I believe this stood for probability (Wahrscheinlichkeit). Obviously this is not a number between 0 and 1, so...
  9. K

    I String theory calculation of Extremal black hole entropy problem

    one of the claimed successes of string theory is its ability to derive the correct Hawking-Bekenstein equations to calculate the quantum entropy of a black hole without any free paramenters, specifically Extremal black hole entropy using supersymmetry and maximal charge. I was wondering if...
  10. S

    I Understand the Thermodynamic Identity: Is This Correct?

    I have a question about the Thermodynamic Identity. The Thermodynamic Identity is given by dU = TdS - PdV + \mu dN . We assume that the volume V and that the number of particles N is constant. Thus the Thermodynamic Identity becomes dU = TdS . Assume that we add heat to the system (we see that...
  11. Bernadette

    B Exploring Entropy with Svante Arrhenius' Salt Water Experiment

    Hello Sorry for my English... We approach slowly (in a quasi-reversible way) an electrical charge of a glass of salt water. Some ions arrange themselves in the glass. What can we say about entropy of this transformation? Bernadette PS: My reflection comes from reading an old physics book...
  12. J

    Entropy: Does Disorder Really Measure Order?

    Let's say you have a very dirty small room room and a giant clean library (lots of organized books) and let's say these occupy the same number of microstates. The entropy according to this equation is the same for the library and the room. But one is more ordered than the other one. How does it...
  13. R

    Enthelpy and Isentropic compression/expansion

    In a certain thermodynamics textbook, specific work done by an isentropic compressor/pump in an ideal rankine cycles, is given by the following; Wpump = h2 - h1 Wpump = v(P2 - P1), where v = v1 When I carry out these two calculations between any two states, I get vastly different answers...
  14. C

    Entropy of spin-1/2 Paramagnetic gas

    As we know, dipole can be only arranged either parallel or anti-parallel with respect to applied magnetic field ## \vec{H} ## if we are to use quantum mechanical description, then parallel magnetic dipoles will have energy ## \mu H ## and anti-parallel magnetic dipoles have energy ## -\mu H##...
  15. guyvsdcsniper

    I Relating Entropy and the 2nd law

    So I am midway through my Thermodynamics course in college and still feel a bit unsure about the 2nd law and entropy. I've learned that the 2nd law was states 3 different ways, and by contrapositive proofs we can determine they are all equivalent. What we end up getting for the 2nd law is...
  16. Nick Goodson

    Figuring Out Heat Transfer & Entropy of Steam at 10 MPa

    Hello everybody, would somebody please put me on the right track to answering this question? 'Consider water undergoes a heat transfer at constant pressure of 10 MPa and changes from liquid to steam. Find the entropy of the system (sfg) as well as the heat transfer per unit mass in this...
  17. G

    B Black Hole Entropy: Basis of Logarithm Explored

    In textbooks, Bekenstein-Hawking entropy of a black hole is given as the area of the horizon divided by 4 times the Planck length squared. But the corresponding basis of the logarithm and exponantial is not written out explicitly. Rather, one oftenly can see drawings where such elementary area...
  18. S

    I Is Entropy in the Universe Lower Now Than After the Big Bang Due to Heat?

    If the universe was very hot right after the Big Bang how come the entropy of the universe was lower at that point than now? Isn't heat a reason for higher entropy?
  19. B

    I Elementary Ideas About Entropy -- Is this textbook example correct?

    Summary:: An elementary example calculation involving entropy in a textbook seems wrong I was reading an elementary introduction to entropy and the second law of thermodynamics. The book gave the example of a gas in a chamber suddenly allowed to expand into an additional portion of the...
  20. O

    I Entropic effects of the Uncertainty Principle?

    Per the Heisenberg uncertainty principle, a particle does not have a precisely defined location. Does such uncertainty contribute to the transfer of thermal energy (i.e. entropy)? Is uncertainty the primary means for the transfer of thermal energy at the quantum level?
  21. Afo

    Why does the entropy of a closed system remain constant in a reversible process?

    Homework Statement:: Why is the entropy of a closed system constant in a reversible process, and not related by ##\Delta S = \int_{i}^{f}\frac{dQ}{T}## (See below for the question in more details) Relevant Equations:: ##\Delta S = \int_{i}^{f}\frac{dQ}{T}## I am reading chapter 24 of Physics...
  22. W

    Coping mechanisms for thermodynamics?

    Wasn’t sure whether I should post this here since it’s a more qualitative question, or under the Thermodynamics thread because that’s a more specific topic. For all practical purposes, the laws of thermodynamics are inviolable, and statistical mechanics puts them on an even firmer theoretical...
  23. cianfa72

    I Entropy change due to heat transfer between sources

    Hi, starting for this thread Question about entropy change in a reservoir consider the spontaneous irreversible process of heat transfer from a source ##A## at temperature ##T_h## to another source ##B## at temperature ##T_c## (##T_h > T_c##). The thermodynamic 'system' is defined from sources...
  24. L

    B Is Entropy Truly Undefined in Physical Systems?

    I always got a bit confused when listening to podcasts about arrow of time and entropy in the universe. So I was reading more about information theory. I learned today that for physical systems entropy is not defined. All it means is how much uncertainty an observer has when making a prediction...
  25. K

    I Theoretical maximum efficiency of a heat engine without Carnot

    Through an intriguing fictitious dialog between Sadi Carnot and Robert Sterling, Prof. Israel Urieli of the Ohio University shows that it is not required to invoke entropy, the second law of thermodynamics, and the Carnot cycle with the [ideal] adiabatic processes in order to find out the...
  26. Yash Agrawal

    Thermodynamics of chemical reactions

    In chemical reactions generally ΔG < 0 , but if we were to consider a reversible path between pure reactants and products at 1 bar pressure , shouldn't the ΔG = 0 for every reaction ? and if it is due to non-pv work , I don't see any non pv work being done in reactions happing in a closed...
  27. Tertius

    I Is Entropy the inexorable conversion of potential to kinetic energy?

    I know the math behind these, and I'm happy to use more precise language if needed, I just wanted to get some input on this sweeping generalization that entropy is the conversion of potential to kinetic energy. A brief summary of two important branches of entropy: 1) thermodynamics - the total...
  28. EFech

    How Do Configurational and Conformational Entropy Differ in Protein Folding?

    I have been reading about protein thermodynamics and found different types and models for entropy calculation before and after protein folding. I understand Vibrational, conformational, configurational entropy are some of the most studied "types" of protein folding entropy. My questions is...
  29. R0dr1go

    B Acceleration of time due to entropy

    Hello, I am a 15 year old who has done research around the topic of why the universe is expanding at an accelerating rate, and how it will come to an end. After years of thought (since I was 11) I have come up with my hypothesis that time itself is accelerating and slowing down, and has been...
  30. B

    Changes in pressure, temp, & entropy of ideal gas in atmosphere

    So for a collection of particles each with mass m, the pressure beneath them, ##p(z)## should be higher than the pressure above them ##p(z + \Delta z)##. This is a change in force per unit area (force per unit volume I suppose) times a volume to equate with the gravitational force $$ \frac...
  31. Ale_Rodo

    I Why is Entropy defined as a fraction of heat over temperature?

    Can we make sense out of the formula of entropy like we do for density (like "quantity of mass per unit volume")? What's the sense of Q/T? Couldn't it be something else? Of course it probably is a 'me-problem', but I haven't studied Thermodynamics deeply yet and was wondering what Entropy...
  32. N

    Chemistry Help with this interpolation (change in entropy while heating water)

    Hello, everyone :). I try to resolve this common problem. But, when i got in the interpolation of state 2, the values not make the sense. I have 25 psia and 75 F, but, in the superheated water table, there are not values with 25 psia (only 20 psia and 40 psia). And, the temperature values...
  33. B

    Expressions for energy & entropy from free energy (discrete distribution)

    So just by by using the definition of the partition function... $$ Z = \sum_i e^{ \frac {-E_i} {k_BT} } = e^{ \frac {-0} {k_BT} } + e^{ \frac {-\epsilon} {k_BT} } = 1 + e^{ \frac {-\epsilon} {k_BT} } $$ And then, a result we obtained in class by using the Boltzmann H factor to solve for ##S##...
  34. E

    Using entropy to discover visually salient features

    I am trying to understand how visually salient features could be discovered by unsupervised learning. I do not want to assume that we already have edge detectors or convolutional neural networks, rather I am trying to imagine how these could be discovered by observing the world. Imagine that a...
  35. burian

    I Entropy after removing partition separating gas into two compartments

    Summary:: Proving that entropy change in mixing of gas is positive definite > >An ideal gas is separated by a piston in such a way that the entropy of one prat is## S_1## and that of the other part is ##S_2##. Given that ##S_1>S_2##, if the piston is removed then the total entropy of the...
  36. L

    Number of moles necessary to get piston back to initial position

    a) ##T_A=\frac{p_AV_A}{nR}=300.7K, P_A V_A=kL^2=nRT_A##, ##P_B S=k\frac{L}{2}\Rightarrow P_B V_B=k(\frac{L}{2})^2 \Rightarrow P_B=\frac{kL^2}{2V_A}=\frac{P_AV_A}{2V_A}=\frac{P_A}{2}##, ##W_{spring\to gas}=\int_{L}^{L/2}kxdx=-\frac{3}{8}kL^2=-\frac{3}{8}nRT_A####\Rightarrow Q=L+\Delta...
  37. L

    Finding the increase in entropy of the universe in gas expansion

    a) ##P_f=\frac{nRT_f}{V_f}=\frac{nR\frac{T_i}{2}}{2V_0}=\frac{1}{4}\frac{nRT_i}{V_0}=\frac{1}{4}P_i## b) ##Q=\Delta U=nC_V \Delta T=n\frac{5}{2}R(-\frac{T_i}{2})=-\frac{5}{4}nRT_i=-\frac{5}{4}P_i V_0## (##L=0## since the gas expands in a vacuum;Now, (a) and (b) are both correct but not (c), for...
  38. warhammer

    Entropy Change & Heat Transferred to a Gas

    By using the given relationship that S=a/T --(1) along with the equation ∫ (delta Q rev)/T=∫dS -- (2) I found out that my answer for the value of Q is mc*ln (T2/T1)*a upon equating (1) & (2). But the solution is instead given as Q=a*ln*(T1/T2). I would be grateful if someone would point out...
  39. G

    I Entropy question involving our Solar System

    Which is a higher entropy state: solar system as it is today with planets going around the sun at fixed distances in an orderly fashion OR all the planets and sun bumping into one another and forming a single body? If the entropy of the combined single body is higher, why doesn't the solar...
  40. nazmulhasanshipon

    Comparison of Change in Entropy

    Upon seeing the question in my assignment I knew in a isobaric process, work done by the gas is ##W=P\Delta V## so if volume is increased ##4## times the original considering the original volume as ##V## we can say after expansion the volume is ##4V##. Then ##W=P(4V-V)=3PV## and the ##Q## would...
  41. D

    B Will entropy eventually destroy even an open and efficient system?

    I'm no expert but, as I understand it, in an open system, one that can take in energy and matter from outside of itself, the overall entropy level can be prevented from increasing (and can actually decrease) under the right conditions. I have three questions: 1. Can the kinds of quantum...
  42. alwaystiredmechgrad

    I Defect concentration formula w/o Stirling approximation

    In many cases, the concentrations of defects or charges are quite big enough to use SA, due to a big number of Avogadro's number. The derivation for the well-known formula of a defect concentration is followed. If the n_v is expected to be lower than 1, then it would be impossible to use SA...
  43. Ebi Rogha

    A Block universe and entropy increase

    I wonder how physicists who support this theory explain the increase of entropy?
  44. S

    Engineering Entropy of Otto Cycle: Deriving s1=s2

    Hello, just wanted to ask regarding the otto cycle; if we were to find the entropy at the phase of isentropic compression and I was already able to derive the temperature 1 and 2 and the pressures at 1 and 2 and I also have the compression ratio of 10. How do I derive the entropy (s1 and s2)...
  45. R

    I Why does entropy grow when a solar system is formed?

    On page 50 of "From eternity to here", Sean Carroll writes that the protostellar cloud had a lower entropy than the solar system it produced. That strikes me as odd. A solar system looks more arranged than a dust cloud. When talking about entropy, someone always mentions the milk in the coffee...
  46. Ebi Rogha

    B Is time a consequence of 2nd law of thermodynamics?

    I have heard from a knowledgeable physics proffessor, time exists independently and it is not a consequence of arrow of time. Could some body explain this?
  47. SchroedingersLion

    A Equilibrium, entropy, probability - Release of constraints

    Hi everyone, I have a fundamental question to the first part of Swendsen's Intro to StatMech and Thermodynamics (book). Suppose we have two isolated systems of volumes ##V_1## and ##V_2##. We distribute ##N## ideal gas particles across the two systems with total energy ##E##. Suppose we bring...
  48. cwill53

    I Entropy and Heat Capacity Relation

    I have a simple question sort of about exact differentials and deciding which variables matter and when. I know we can write entropy ##S## as ##S(P,T)## and ##S(V,T)## to derive different relations between heat capacities ##C_V## and ##C_P##. I was wondering if it is technically correct to...
  49. K

    Other Books on Entropy for Physics Enthusiasts

    Hello! Could you please recommend me some good books about entropy for physics enthusiasts (someone who doesn't know physics but wants to learn about this)? Thank you!
  50. DaTario

    Connection between the two definitions of entropy

    Hi All, I would like to know how can one connect the two definitions of entropy ##\Delta S = \int_{T_i}^{T_f} \frac{dQ}{T} ## and ##\Delta S = k_B \ln (\frac{W_f}{W_i})##, particularly I am interested in how the logarithm emerges. Does it have to do with some linear dependence of the heat with...
Back
Top