I came across the following statement:
\sum_n p(n)e^{-in\theta} \approx exp[-i\theta \langle n\rangle - \theta^2 \langle ( \delta n)^2 \rangle / 2]
where \theta is small, \sum_n p(n) = 1, \langle n \rangle = \sum_n p(n)n, and \langle ( \delta n)^2 \rangle = \sum_n p(n)(n-\langle n \rangle)^2...