Deriving laplacian in spherical coordinates

AI Thread Summary
The discussion focuses on deriving the Laplacian in spherical coordinates, with initial confusion regarding the application of the chain rule. A specific formula for the Laplacian is provided, highlighting the contributions from radial, polar, and azimuthal components. Clarification is sought on understanding the divergence formula in this context, with references to vector bases where divergence can be zero. Additional relations for the basis vectors in spherical coordinates are shared, which aid in the derivation process. The conversation emphasizes the importance of understanding the underlying principles for successful derivation.
mooshasta
Messages
28
Reaction score
0
Hey...

Could someone help me out with deriving the LaPlacian in spherical coordinates? I tried using the chain rule but it just isn't working out well.. any sort of hint would be appriciated. :)

\nabla^2 = \frac{1}{r^2} [ \frac{\partial}{\partial r} ( r^2 \frac{\partial}{\partial r} ) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} ( \sin \theta \frac{\partial}{\partial \theta\ ) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} ]
 
Last edited:
Physics news on Phys.org
I want to understand the derivation too. I understand the gradient in spherical coordinate, but the divergence formula bothers me. I got some info from some website saying that one can find a basis of vectors where its divergence is zero then take the divergence of the function based on those vectors...
 
If anyone was curious about this, I found the solution online:

http://planetmath.org/encyclopedia/%3Chttp://planetmath.org/?method=l2h&from=collab&id=76&op=getobj
 
Last edited by a moderator:
That's one way of doing it.
Here's another one:
\vec{i}_{r}=\sin\phi\cos\theta\vec{i}+\sin\phi\sin\theta\vec{j}+\cos\phi\vec{k}, \vec{i}_\phi}=\frac{\partial\vec{i}_{r}}{\partial\phi}=\cos\phi\cos\theta\vec{i}+\cos\phi\sin\theta\vec{j}-\sin\phi\vec{k},\vec{i}_{\theta}=\frac{1}{\sin\phi}\frac{\partial\vec{i}_{r}}{\partial\theta}=-\sin\theta\vec{i}+\cos\theta\vec{j}
along with:
\frac{\partial\vec{i}_{r}}{\partial{r}}=\frac{\partial\vec{i}_{\phi}}{\partial{r}}=\frac{\partial\vec{i}_{\theta}}{\partial{r}}=\vec{0}
\frac{\partial\vec{i}_{\theta}}{\partial\phi}=\vec{0},\frac{\partial\vec{i}_{\phi}}{\partial\phi}=-\vec{i}_{r}
\frac{\partial\vec{i}_{\phi}}{\partial\theta}=\cos\phi\vec{i}_{\theta},\frac{\partial\vec{i}_{\theta}}{\partial\theta}=-\sin\phi\vec{i}_{r}-\cos\phi\vec{i}_{\phi}

Now, given these relations, along with the expression for the gradient in spherical coordinates \nabla=\vec{i}_{r}\frac{\partial}{\partial{r}}+\vec{i}_{\phi}\frac{1}{r}\frac{\partial}{\partial\phi}+\vec{i}_{\theta}\frac{1}{r\sin\phi}\frac{\partial}{\partial\theta}, we may easily derive the expression for the Laplacian by differentiating, and performing the dot products:
\nabla^{2}=\nabla\cdot\nabla=\vec{i}_{r}\cdot\frac{\partial\nabla}{\partial{r}}+\frac{1}{r}\vec{i}_{\phi}\cdot\frac{\partial\nabla}{\partial\phi}+\frac{1}{r\sin\phi}\vec{i}_{\theta}\cdot\frac{\partial\nabla}{\partial\theta}
 
Last edited:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top