The Bessel functions satisy the recurrence relations
J_{n-1}+J_{n+1}=\frac{2\,n}{x}\,J_n\quad \text{and} \quad J_{n-1}-J_{n+1}=2\,J_n'
Adding these, you get
x\,J_{n-1}=n\,J_n+x\,J_n'\overset{n=2}\Rightarrow x\,J_1=2\,J_2+x\,J_2'
while integrating from 0 to \infty
\int_0^\infty...