How Do You Solve Complex Differential Equations in Population Growth Models?

AngusYoung93
Messages
5
Reaction score
0
Hey, everyone. I've been doing my Calculus II homework, and I've been trying these two problems for the past few hours, but I can't even seem to get started on them. A friend of mine recommended I try here because you guys are awesome.

Homework Statement


The Gompertz equation
dP/dt = P(a - b ln(P))
where a and b are positive constants, is another model of population growth.
a) Find the solution of this differential equation that satisfies the initial condition: P(0) = p(sub(0))
b) What happens to P(t) as t -> infinity?
c) Determine the concavity of the graph of P


2. The attempt at a solution

dP/dt = P(a - bQ)
where Q = ln(x)​



Homework Statement



the differential equation
dP/dt = P(10^-1 - (10^-5)P)
models the population of a certain community. Assume P(0) = 2000 and time t is measured in months.
a) Find P(t) and show that lim t -> infinity exists
b) Find the limit


2. The attempt at a solution

I do not even know where to start on this. Any help at all would be nice.
 
Physics news on Phys.org
Write it as
\frac{d\,P}{P\,(a-b\,\ln P)}=d\,t
and set \ln P=u
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top