Definite Integral of Exponential Function

singular
Messages
41
Reaction score
0
[SOLVED] Definite Integral of Exponential Function

Homework Statement


I have an integral that I need to solve for a quantum physics problem

\int^{\infty}_{-\infty}e^{-a|x| - ikx}dx

How would I go about solving this thing?
 
Physics news on Phys.org
Split it into two intervals, i.e. (-\infty,0),\,(0,\infty) and make a change or variables in the first one x\to-x
 
Rainbow Child said:
Split it into two intervals, i.e. (-\infty,0),\,(0,\infty) and make a change or variables in the first one x\to-x


\int^{\infty}_{-\infty}e^{-a|x| - ikx}dx

Split into two intervals
\int^{\infty}_{0}e^{-a|x| - ikx}dx + \int^{0}_{-\infty}e^{-a|x| - ikx}dx

Change of variables in the second term x to -x
\int^{\infty}_{0}e^{-a|x| - ikx}dx - \int^{0}_{\infty}e^{-a|x| + ikx}dx

\int^{\infty}_{0}e^{-a|x| - ikx}dx + \int^{\infty}_{0}e^{-a|x| + ikx}dx

Are these steps what you are talking about?
What would I do from here?
 
Since x\in(0,\infty)\Rightarrow |x|=x. Now combine the two integrals.
 
Rainbow Child said:
Since x\in(0,\infty)\Rightarrow |x|=x. Now combine the two integrals.

Oh...duh...thank you
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top