Thanks a lot. Now I have just two short questions:
(1) In the last expression with the string of equalities, could you have expanded the bracket differently. Meaning that instead of \eta_{\mu\rho}\Lambda^\rho{}_\sigma\omega^\sigma{ }_\lambda(\Lambda^{-1})^\lambda{}_\nu , would it had been...
Can anyone explain to me why in going from (2.4.7) to (2.4.8) the indices on the LT are arranged in the way they are. Why is mu the first index (lower) and rho the second (upper)?
Could they have been arranged in any other way? From the rules that I know, they can.
Well. To put it in another way. How would the boundary conditions change in case the sheets were made out of dielectrics. As far as I understand, there cannot be any difference.
Thanks a lot for answering. I had given up on it.
Homework Statement
Two infinitely long perfectly conducting planes at x = 0 and y = 0 form a boundary on the upper right quadrant (x > 0, y > 0). A magnetic dipole m = m_x + m_y [with their corresponding unit vectors] is located at at (x', y', z' = 0) in the upper right quadrant. Find the...
For a while you had me worried :)
I can change the limits later of course but I wanted to know how to solve that wretched integral. But I do think that the problem allows me to consider a point in a single plane.
In any event, it seems that I am on the right track and only need to solve...
Pretty sure that you have to and for two reasons:
[1] Wiki says that its for time varying currents and charges without ever mentioning finiteness
[2] Just saw that Griffiths example 10.2 solves for an infinite line current as well. However, the time dependence over there is not sinusoidal
Homework Statement
The question concerns a square loop in the presence of an infinitely long sinusoidally varying line current.
The complete problem is http://physics.indiana.edu/~berger/p506_fall2008/p507ps11.pdf"
Homework Equations
The retarded potential.The Attempt at a Solution
I defined...
I was (implicitly) under the impression that the rho calculated would be valid for the surface as well. Could you kindly give me a physical reason for its not being valid at the surface.
Regards
Homework Statement
Jackson 6.4b
Homework Equations
Multipole expansion especially Eq 4.9 in Jackson which is for a Quadrupole
The Attempt at a Solution
I found the result in 6.4a. The rho over there tells us that there is a charge density inside the sphere. Since the charge density...
Homework Statement
This is Pathria (2nd Ed) 1.6 and it seemed simple enough but the magnitude of the answer seems unbelievably large:
A cylindrical vessel 1 m long and .1 m in diameter is filled with a monoatomic gas at P = 1 atm and T = 300 K. The gas is heated by an electrical discharge...
Homework Statement
I can't seem to figure out how he writes down this equation. Specifically:
a. Isn't Theta' = 90 degrees. Then why doesn't he write it out explicitly.
b. Whats the use of adding the Sin(Theta') if he is going to use a delta function using the Cos
c. What is the radius 'a'...
That clears up a lot in my foggy brain but there are still some issues. The y in the integral. Is this the complex part of the variable in the contour integral. i.e. z = x+iy. Or is it just some arbitrary variable. I thought that it was not connected to the integration variable in the contour...