Recent content by Undoubtedly0
-
U
Graduate How many constants-of-motion for a given Hamiltonian?
Thank you, wrobel. This was exactly what I was looking for. I have found it simple to show that there are at most ##2n## functionally independent constants-of-motion for a Hamiltonian of ##2n## freedoms.- Undoubtedly0
- Post #5
- Forum: Mechanics
-
U
Graduate Examples of systems which cannot receive work adiabatically?
In Principles of General Thermodynamics, Hatsopoulus and Keenan (p 442) make the following claim: What, however, would be some physical examples of such a system?- Undoubtedly0
- Thread
- Equilibrium Systems Thermodynamics Work
- Replies: 1
- Forum: Mechanics
-
U
Graduate How many constants-of-motion for a given Hamiltonian?
Thanks Khashishi. I have assumed that functional independence extends to more than two functions in the analogous way that linear independence does. That is, if ##E## and ##L## are constants of the motion, ##\{E,L,E^L\}## is not a functionally independent set. Said differently, what is the...- Undoubtedly0
- Post #3
- Forum: Mechanics
-
U
Graduate How many constants-of-motion for a given Hamiltonian?
I am using Jose & Saletan's "Classical Dynamics", where they introduce a rather contrived Hamiltonian in the problem set: H(q_1,p_1,q_2,p_2) = q_1p_1-q_2p_2 - aq_1^2 + bq_2^2 where a and b are constants. This Hamiltonian has several constants-of-motion, including f = q1q2, as can be easily...- Undoubtedly0
- Thread
- Dynamics Hamiltonian
- Replies: 4
- Forum: Mechanics
-
U
Graduate Derivative by Leibniz's integral rule
So if we take it to be the case that \frac{\partial \tau}{\partial x} = R(T)\frac{\partial T}{\partial x}, then what would be the value of \partial \tau/\partial x |_{x=c} ? \left.\frac{\partial \tau}{\partial x}\right|_{x=c} = R(T)|_{x=c} \cdot\left.\frac{\partial T}{\partial...- Undoubtedly0
- Post #5
- Forum: Calculus
-
U
Graduate Derivative by Leibniz's integral rule
\theta is a dummy variable that stands for T = T(x,y), which I think means that R(\theta) = R(\theta(x,y)), correct?- Undoubtedly0
- Post #3
- Forum: Calculus
-
U
Graduate Derivative by Leibniz's integral rule
Hi all. I am looking at the functions \tau(x,y), T(x,y), and R(T) related by \tau(x,y) = \int_{\pi}^{T(x,y)} R(\theta) d\theta . It seems that by Leibniz's integral rule \frac{\partial \tau}{\partial x} = \int_\pi^{T} \frac{\partial R}{\partial x} d\theta + R(T)\frac{\partial...- Undoubtedly0
- Thread
- Derivative Integral
- Replies: 5
- Forum: Calculus
-
U
Are there any recreational physics journals for classical mechanics enthusiasts?
Thanks jtbell, this is something like what I was looking for.- Undoubtedly0
- Post #4
- Forum: STEM Academic Advising
-
U
Are there any recreational physics journals for classical mechanics enthusiasts?
Do there exist any "recreational physics" journals? Such as one that publishes simple, but interesting, applications of classical mechanics?- Undoubtedly0
- Thread
- Journals Physics
- Replies: 3
- Forum: STEM Academic Advising
-
U
Undergrad Can a Function in Polar Coordinates Fail in Cartesian Coordinates?
Hi all. What does it mean that a function in polar coordinates may not be a function in Cartesian coordinates? For example, r(\theta) = 1 + \sin\theta is a function because each \theta corresponds to a single value of r. However, in Cartesian coordinates, the graph of this function most...- Undoubtedly0
- Thread
- Coordinate Coordinate systems Functions Systems
- Replies: 2
- Forum: Calculus
-
U
Force due to gravity inside planet
Thanks mfb. Regarding our difference, I think your third term might be mistaken. If we hollow out the planet from 0 ≤ r < R/2, then the force due to gravity in the domain R/2 ≤ r ≤ R is F_G = \frac{Gm\frac{\rho}{3}}{r^2}\left[ \frac{4\pi}{3}r^3 -...- Undoubtedly0
- Post #3
- Forum: Introductory Physics Homework Help
-
U
Force due to gravity inside planet
Here is a simple problem in classical gravitation. Consider a spherical planet of radius R, and let the radial coordinate r originate from the plant's center. If the density of the planet is ρ from 0 ≤ r < R/2 and ρ/3 from R/2 < r < R, then my work tells me that the maximum force due to...- Undoubtedly0
- Thread
- Force Gravity Planet
- Replies: 3
- Forum: Introductory Physics Homework Help
-
U
What Is the Ventilation Box Near the Floor?
Thanks Russ, you have answered my question. I imagine it is electric.- Undoubtedly0
- Post #4
- Forum: Mechanical Engineering
-
U
What Is the Ventilation Box Near the Floor?
Hi all; an easy question for you. In the following picture, what is the ventilation box in the corner near the floor? Is there a particular name for these things? I see them everywhere. http://upload.wikimedia.org/wikipedia/commons/7/76/Duracraft_pedestal_fan.jpg Thanks!- Undoubtedly0
- Thread
- Unit Ventilation
- Replies: 3
- Forum: Mechanical Engineering
-
U
Evaluating high-degree polynomials
Thanks uart. Through what you said I have realized that it would far far easier to simply evaluate the polynomials using the cosine-arcosine property, rather than evaluating the polynomials directly. Thanks!- Undoubtedly0
- Post #5
- Forum: MATLAB, Maple, Mathematica, LaTeX