Proving Ring Isomorphism of Q[x]/<x^2-2> and Q[sqrt2]

  • Thread starter Thread starter math-chick_41
  • Start date Start date
  • Tags Tags
    Isomorphism Ring
math-chick_41
Messages
34
Reaction score
0
what is the easiest way to show that
Q[x]/<x^2-2> is ring isomorphic to
Q[sqrt2]={a+b(sqrt2)|a,b in Q}

just give me a hint how to start
 
Physics news on Phys.org
anyone?

do I have to show that x^2 - 2 is in the kernal?
 
why don't you just write down the (obvious) isomorphism? (obvious in the sense of one side only has x as a special quantity, the other sqrt(2), and anything in Q[x]/(x^2-2) is of the form a+bx, isn't it...)
 
Last edited:
yes! thank you. the example in the book goes into too much detail and I was trying follow that, but yes the function f(a+bx)=a+b(sqrt2) is a ring isomorphism.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top