Is Angular Momentum Conserved in a Central and Gravitational Force System?

  • Thread starter Thread starter moonman
  • Start date Start date
  • Tags Tags
    Lagrangians
moonman
Messages
21
Reaction score
0
I have a problem with a particle experiencing a central force towards some origin, as well as a gravitational force downwards. I've calculated the Lagrangian, and the equations of motion. Now I'm being asked to see if the system follows conservation of angular momentum. How do I do this? I know it has something to do with seeing if the system is invariant of rotation, but how do I check for that?
 
Physics news on Phys.org
If \frac{\partial L}{\partial q} =0 then the conjugate momentum \frac{\partial L}{\partial \dot{q}} is a conserved quantity.

If that doesn't clear things up, then post what you have for the Lagrangian.
 
But the conjugate momentum is the same as the angular momentum only in some cases.
Compute H and chech if H commutes with J.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top