Quantum mechanics (angular momentum)

icelevistus
Messages
17
Reaction score
0
A particle is described by the wave function

\[CapitalPsi] (\[Rho], \[Phi]) =
AE^(-\[Rho]^2/2 \[CapitalDelta]^2) (Cos[\[Phi]])^2

Show

P (Subscript[l, z] = 0) = 2/3
P (Subscript[l, z] = 2 h) = 1/6
P (Subscript[l, z] = -2 h) = 1/6





I have already used

Subscript[\[CapitalPhi], m] (\[Phi]) = 1/Sqrt[2 \[Pi]] E^Im\[Phi]

as the problem suggests to express the cos^2 as PHI(sub m) states




I am simply brickwalled at how to calculate these probabilities. The only way I remember to calculate probabilities given a wavefunction is for position (probability of measuring the particle within a certain region). Or also, I remember how to find the probability of a wavefunction collapsing to a particular state if it is written as a linear combination of states. Can someone point me to the relevant equation or idea?
 
Physics news on Phys.org
Sorry, looks like that Mathematica code was no good.

Is it still legible?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top