Finding Scalar Function G: Step-by-Step Guide

  • Thread starter Thread starter shermaine80
  • Start date Start date
  • Tags Tags
    Function Scalar
shermaine80
Messages
30
Reaction score
0
Hi,

I got a doubt question for this.
Given this general expression for the scalar function, G such that
del G = F(x,y,z)=2xyi + (x^2 - Z^3)j + (-3yz^2 + 1)k

How do i go about finding G?
 
Physics news on Phys.org
Hi shermaine80! :smile:

(have a nabla: ∇ :wink: and a curly d: ∂)

If ∇G = fi + gj + hk, then ∂G/dx = f, ∂G/dy = g, ∂G/dz = h,

so G = ∫fdx + A(y,z), G = ∫gdy + B(x,z), G = ∫hdx + C(x,y),

where A B and C can be any functions …

if you try it, you'll soon find it's fairly obvious what A B and C have to be! :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top