Effect of Magnetic Fields in Water?

AI Thread Summary
The discussion centers on the effects of electromagnetic (EM) fields on water, particularly in the context of using a supercooled electromagnet. It is clarified that an insulated EM coil does not interact with pure water unless there is an electric current present, which can lead to movement in the water due to the motor effect. The concept of diamagnetism is introduced, indicating that pure water generates a weak opposing magnetic field, but this effect is minimal. In contrast, saltwater, being conductive, can develop a more significant opposing field when exposed to a changing magnetic field, following Lenz's Law. Overall, while pure water shows negligible interaction with static magnetic fields, saltwater can exhibit more pronounced effects due to its conductivity.
taylaron
Gold Member
Messages
391
Reaction score
1
I'm interested in doing a project that involves submerging a very strong if not supercooled electromagnet in water; I'm concerned about the effect of the EM field on the water itself.
I know a bit about Magneto Hydro Dynamics but i don't have the math skills to understand it entirely. college freshman and all.
I understand that when you insert a magnetic field of a certain form (involving charged plates etc...) into water with current running through both the plates and the water, the water will follow the field lines; is this correct?

So my questions:
1. Does the EM field from an insulated EM coil interact with water alone (no current passing through it)?
2. Does the EM field from an insulated EM coil interact with water which has a current running through it?

Answers do not need to go incredibly deep into MHD because what I'm doing does not deal directly with MHD. I'm concerned about the possible side effects it may generate.

Thanks-
Tay
 
Engineering news on Phys.org
What's a supercooled electromagnet?
 
The magnetic field won't have any effect on the water but if the magnet is "supercool" it might freeze it.

The effect you describe is easy to do with Neodymium magnets.
You have to have water with salt in it so that it conducts.

You then get the motor effect where you have a current moving in a magnetic field and this produces movement in the water. The water is just like the wire in a magnetic field.

It can be done with a Petrie dish and magnets above and below it. Probes in the water provide the electric current and movement of the water is seen by the turbulence in the water.

Fleming's Left Hand Rule predicts the direction of water flow.

But without electric currents in the water you won't see any effect.
 
Last edited:
Ok, Thanks vk6kro.
Phrak- a 'supercooled' magnet is a magnetic superconductor. it is commonly chilled to temperatures as low as that of liquid nitrogen or liquid Helium. The advantage is that when they are superconductors (super cold) the level of resistance drops dramatically, allowing an enormous amount of power to flow through the wires which would normally cause the wire to melt or vaporize. the supercooled magnet still generates heat, but it is often minuscule. Google 'super conducting magnets'. they are often used in particle accelerators.

-Tay
 
taylaron said:
Ok, Thanks vk6kro.
Phrak- a 'supercooled' magnet is a magnetic superconductor. it is commonly chilled to temperatures as low as that of liquid nitrogen or liquid Helium. The advantage is that when they are superconductors (super cold) the level of resistance drops dramatically, allowing an enormous amount of power to flow through the wires which would normally cause the wire to melt or vaporize. the supercooled magnet still generates heat, but it is often minuscule. Google 'super conducting magnets'. they are often used in particle accelerators.

-Tay

OK.

Pure water is diamagnetic. It generates a field that opposes the applied magnetic field. It's substancially weaker than the usual forces associated with ferromagnetic materials by a few orders of magnitude.
 
Diamagnetic is a new term for me, so let me get this straight:

if I had an insulated super cooled electromagnetic coil submerged in pure liquid water, the magnetic field would push the water away from the magnet? that doesn't make sense.
What about salt-water?

The ends of the coil are where it gets interesting it seems. Would the water displace itself there because of the extreme repulsive force of the magnet and the diamagnetic water?
I'm probably wrong, but straighten me out.
 
taylaron said:
Diamagnetic is a new term for me, so let me get this straight:

if I had an insulated super cooled electromagnetic coil submerged in pure liquid water, the magnetic field would push the water away from the magnet? that doesn't make sense.
What about salt-water?

The ends of the coil are where it gets interesting it seems. Would the water displace itself there because of the extreme repulsive force of the magnet and the diamagnetic water?
I'm probably wrong, but straighten me out.

Diamagnetism is very weak. It may be disappointing in its weakness. It occurs with a static magnetic field. Adding salt wouldn't change the effect much, that I know of. But salt water, as a conductor, will develop an opposing magnetic field to a changing magnetic field. The salt water acts as though it is a shorted one-turn secondary of a transformer (because it is). This is the same thing as the usual classroom demonstration of a copper ring that is repelled from the end of a high frequency solenoid. Look up Lenz's Law.

If you're interested, google 'diamagnetism'. All in all, there are 4 sorts of magnetic materials: ferromagnetic, diamagnetic, paramagnetic, and one other effect I forget.
 
Back
Top