Proving Matrix Similarity: Trace vs. Determinant Comparison

  • Thread starter Thread starter talolard
  • Start date Start date
  • Tags Tags
    Matrices
talolard
Messages
119
Reaction score
0
If I have two matrices A and B and I want to show they are similar, is it enough to show that Trace(A)=Trace(B) or instead show that Det(A)=Det(B)?
Thanks
Tal
 
Physics news on Phys.org
No, it isn't. For example, both
\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}
and
\begin{bmatrix}\frac{1}{2} & 0 \\ 0 & 2\end{bmatrix}
have the same determinant but are not similar.

Also both
\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}
and
\begin{bmatrix}2 & 0 \\ 0 & 0\end{bmatrix}
have the same trace but are not similar.

And, just in case you were wondering,
\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}
and
\begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}
have the same determinant and the same trace but are not similar.

In order to be similar, two matrices must have the same eigenvalues and the same number of independent eigenvectors corresponding to each eigenvalue.
 
Great, Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top