Instantaneous Acceleration on a Velocity-Time Graph

AI Thread Summary
To find instantaneous acceleration on a velocity-time graph, the tangent line at a specific point represents the instantaneous acceleration. For straight lines on the graph, the acceleration is constant, meaning any point on that line will yield the same acceleration value. If the graph is curved, drawing a tangent at the desired time will provide the instantaneous acceleration at that point. The method of using the derivative of velocity with respect to time is essential for understanding acceleration in both linear and non-linear cases. Clarification on these concepts helps in accurately determining acceleration at specific moments.
Linday12
Messages
53
Reaction score
0
[SOLVED] Instantaneous Acceleration on a Velocity-Time Graph

I need to find the acceleration at a specific time (for example, 6s). I know how to do the acceleration between time intervals, slope=rise/run, a=vf-vi/t2-t1, but what do I do when I need the acceleration at a specific time?

I've tried to do a=v/t, but it seems like there's something I'm missing. Like for instance, what do you do for a straight line, obviously the acceleration is 0, but this method gives a different acceleration.
 
Physics news on Phys.org
The tangent of a velocity-time graph represents instantaneous acceleration.
 
Ok, The velocity-time graph in this case is simpler, and is a series of straight lines (not curved). So, I wouldn't have to draw the tangent, would I? Do I have to pick another point on the line and use it? How would this give the acceleration for the given point, and not for a time interval? (Say I need the acceler. for 6s, wouldn't taking the data for 6s-5s be giving a time interval instead of the acceleration for 6s?)

Sorry, not entirely sure I'm making sense. Any help is greatly appreciated!
 
For a straight curve on a V-t graph, it doesn't matter which point you pick or if you pick an interval because the acceleration is constant for all points on that interval. Remember, the acceleration is the derivative of velocity with respect to time, so if you have a linear relationship between velocity and time, you'll have a constant acceleration.
 
Thank you. That was exactly what I was lost on!
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top