Is the polarization of light relative?

Nirgal
Messages
28
Reaction score
1
I was wondering if anyone had input into this question. Is the measured polarization of a beam of light relative to the frame of the observer?

In the texts on Optics that I've read, there does not seem to be any reference to the observer's frame. It is only mentioned that light is Left-circularly polarized or linearly polarized, etc.

When we describe polarization we ascribe to the light-beam in question a vector representing the polarized state. But is that polarized state the same for each observer?

I am speculating that the polarization is relative and this is my (naive) reasoning.
If we were discussing the path of a bullet, then in the frame of reference of somebody rotating, the path of the bullet would be curved. So the time dependent vector representing the path of the bullet would depend on the frame of reference of the observer.

Now, the physics of light is so bizarre and I can barely understand it that I do not assume that the analogy between bullets and light can be taken very far. The point of the analogy though is that polarization state is described by a vector and similarly the path of the bullet. And since the mathematical abstraction that the vector represents depends on the reference frame for the bullet then I would assume that the polarization similarly depends on the reference frame of the observer as well.

This is one of my problems in physics though. I am constantly in a wrestling match between distinguishing the mathematics from the physics.
 
Physics news on Phys.org
First consider the case of a massive spinning particle. Say that one observer says the particle is spinning like a right-handed screw going into a piece of wood, i.e., clockwise as seen from behind. Another observer who is traveling in the same direction as the particle, but faster, sees the particle as going backward, and therefore says it is spinning like a left-handed screw.

It's different in the case of a massless particle. You can't overtake a massless particle, because massless particles travel at c.

This is also why it's possible to have a law of physics that says that light is always transversely polarized. You can't have a constraint on the polarization of a massive particle, because there would be no way to define the constraint in the frame where the particle was at rest.
 
bcrowell said:
First consider the case of a massive spinning particle. Say that one observer says the particle is spinning like a right-handed screw going into a piece of wood, i.e., clockwise as seen from behind. Another observer who is traveling in the same direction as the particle, but faster, sees the particle as going backward, and therefore says it is spinning like a left-handed screw.

It's different in the case of a massless particle. You can't overtake a massless particle, because massless particles travel at c.

This is also why it's possible to have a law of physics that says that light is always transversely polarized. You can't have a constraint on the polarization of a massive particle, because there would be no way to define the constraint in the frame where the particle was at rest.
I suppose you mean massless.
 
Passionflower said:
I suppose you mean massless.

No, I meant massive.
 
bcrowell said:
No, I meant massive.
Oh I see, you are talking about a constraint, took me a second the realize what you wrote.

Sorry for that.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Back
Top