Laplace transform and bessels equation

wtmoore
Messages
20
Reaction score
0

Homework Statement


I'm trying to find the Laplace transform of tJ''0(t), it's from bessels equation, but that doesn't matter too much at the moment, I just need to integrate (e^-st)*t*J''0(t) but am unsure how to go about this with the J''0(t) in there.
 
Physics news on Phys.org
Maple 14 gets an answer:
t*diff(BesselJ(0,t),t$2): <---second derivative of J0(t), times t

f:=expand(%);
f := -t BesselJ(0, t) + BesselJ(1, t)

L:=int(f*exp(-s*t),t=0..infinity);

L:= [1 + 2s^2 + s^4 - (s^2 + 2s)*sqrt(1 + s^2)]/ (1+s^2)^2

Note: Maple used the DE for J0 and recursions to express J0'' in terms of J0 and J1, then it integrated that.

RGV
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top