Proof by contradiction for statement of the form P->(Q and R)

AI Thread Summary
To prove a statement of the form P implies (Q1 and Q2) by contradiction, one assumes P and the negation of (Q1 and Q2), which is (not Q1 or not Q2), to find a contradiction. It is not sufficient to only find a contradiction with both not Q1 and not Q2; instead, the focus should be on the overall negation. The correct negation of "if P then (Q and R)" is "P and (not Q or not R)." The contrapositive of the statement maintains the same truth value as the original statement. Understanding these logical relationships is crucial for effective proofs.
christoff
Messages
123
Reaction score
0
Say I have a statement like this:
P implies (Q1 and Q2).

If I wanted to prove this by contradiction, I would assume P and not(Q1 and Q2)=[(not Q1) or (not Q2)] both hold, and try to find a contradiction.

My question is... Am I done if I find a contradiction while assuming P and [(not Q1) and (not Q2)] ? Is this sufficient? Or do I need to find a contradiction in both the statements:
P and (not Q1),
P and (not Q2)

?
 
Mathematics news on Phys.org
Never mind. I figured it out.
 
No. The negation of "Q and R" is "not Q or not R".
The negation of "if P then (Q and R)" is "If (not Q or not R) then not P".

(For those who read this thread and wondered).
 
The contrapositive of "if P then (Q and R)" is "if (not Q or not R) then not P"

But the contrapositive has the same truth value as the original.

The negation of "if P then (Q and R)" is "P and (not Q or not R)"
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top