ttn said:
Yes, OK. So then the point is just that "hidden variable theories" (like, e.g., deBB) need not be "realist theories".
I'm using
hidden variable theory and
realistic theory interchangeably. So, any hidden variable theory is a realistic theory. Any theory which does not incorporate hidden variables is a nonrealistic theory.
ttn said:
It's not correct that Bell's formulation of locality (i.e., "Bell locality") assumes the existence of hidden variables. Maybe we're still not quite on the same page about what "hidden variables" means, because we're not on the same page about what "underlying" means in your formulation above. Usually the phrase "hidden variable" is used to mean some *extra* thing, beyond just the standard wave function of ordinary quantum theory, that is in the mix. So then, e.g., deBB is a hidden variable theory because it uses not only the wave function, but also the added "definite particle positions", to account for the results. In any case, though, the point is that "Bell locality" does not presuppose "realism" and it also does not presuppose "hidden variables". You can meaningfully ask whether ordinary QM (not a hidden variable theory!) respects or violates "Bell locality". (It violates it.)
If Bell locality doesn't require hidden variable representation, then how would Bell locality be formulated and incorporated into a model of a Bell test without the explicit denotation of a hidden variable, such as Bell's λ, that contributes to the determination of individual results?
Ok, you could write A(a) = ±1 and B(b) = ±1, but then your formulation has already deviated from one of the primary requirements of the exercise aimed at finding an answer to the suggestion that QM might be made a more complete theory, perhaps a more accurate (or at least a more heuristic) description of the physical reality with the addition of supplementary 'hidden' variables.
To further clarify how I'm using the terms
underlying and
hidden variable,
underlying refers to the sub-instrumental 'quantum realm' where the evolution of the 'system' being instrumentally analyzed is assumed to be occurring.
Hidden variable refers to unknown variable parameter(s) or property(ies) of the quantum system being instrumentally analyzed that are assumed to exist 'out there' in the 'quantum realm' in the pre-detection evolution of the system.
ttn said:
OK, but then you're using the word "realistic" in a different way than (I think) most other people here do. I think most people use that word to mean that there are definite values pre-encoded in the particles somehow, such that there are meaningful answers to questions like: "What would the outcome had been if, instead of measuring along x, I had measured along y?"
A hidden variable, such as Bell's λ, need not provide a meaningful answer to a question such as, "What would the outcome at A have been if, instead of the polarizer being set at 20° it had been set at 80°?", because λ can refer to
any variable underlying parameter(s) or property(ies) of the system, or any collection thereof. The denotation of λ in the model acts as a placeholder for
any unknown underlying parameter(s) or property(ies) which, together with the relevant instrumental variable(s), contribute to the determination of individual results. The hidden variable is needed in this way in order to explicitly denote that something in addition to the instrumental variable, something to do with the 'system' being analyzed, is determining the individual results, because this is what the LHV program, the attempt to answer the question of whether or not QM can be viably supplemented with underlying system parameters and made explicity local, is predicated on.
ttn said:
I certainly agree that it makes sense to call deBB "realist" by some meanings of the word "realist". But it is important to understand that the theory is *not* "realist" in the narrow sense I explained above. Stepping back, that's what I wanted to point out here. The word "realism" is a slippery bugger. Different people use it to mean all kinds of different things, such that miscommunication and misunderstanding tends to be rampant.
I understand, I think. But I'm just using
realistic synonymously with
hidden parameter. If a theory includes explicit notation representing non-instrumental hidden (or underlying or unknown ... however it might be phrased) parameter(s), then it's a realistic theory, if not, then it isn't.
ttn said:
Me too, though I'm not sure what the two "senses" of nonlocality here might be. They both violate "Bell locality". What other well-defined sense does anybody have in mind?
Yes, I agree that the fact that they both violate Bell locality is the unambiguous criterion and statement of their non-(Bell)localness. What I had in mind was that the way in which deBB is explicitly nonlocal (and nonmechanical) through the quantum potential is a bit different than the way standard QM is (to some) explicitly nonlocal (and nonmechanical) through instantaneous collapse and establishment and projection of a principle axis subsequent to detection at one end or the other.
ttn said:
I'm this "norsen" guy, by the way. So, you know what I think of Jarrett already.
Oh, cool. Yes, I read that paper some time ago. I think that I don't quite understand your reason, your argument for dismissing Jarrett's idea. Maybe after reading it again I'll get it. If you have time, would a brief synopsis here, outlining the principle features of your argument, be possible?
ttn said:
I can't follow this. Are you just repeating Jarrett's idea that "Bell locality" is actually the conjunction of two things, only one of which really deserves to be called "locality"? So then, from the mere fact that "Bell locality" is violated, we can't necessarily infer the (genuine) "locality" is violated? If that's it, you know I disagree, but if the "Bell vs. Jarrett" paper didn't convince you, nothing I can say here will either. =)
Yes, that's basically it. I would say, following Jarrett, that Bell locality encodes two assumptions, one of which, the assumption that paired outcomes are statistically independent, is the effective cause of the incompatibility between Bell LHV and QM, and the incompatibility between Bell LHV and experiment, and that this doesn't tell us anything about locality or nonlocality in nature.
But, as I mentioned, I still have this feeling that I don't fully understand your argument against Jarrett ... but will say that if your argument is correct, then there wouldn't seem to be anything left but to conclude that nonlocality must be present in nature. (Unless the idea that this nonlocality must refer to instantaneous action at a distance is also correct, and then I have no idea what it could possibly mean.)