Unambiguous Evidence for Weak Neutral Currents

hob
Messages
6
Reaction score
0

Homework Statement



What observation of the process: (anti muon neutrino) + (electron) -> (anti muon neutrino) + (electron) constitutes unambiguous evidence for weak neutral currents,

whereas the observation of (anti electron neutrino) + (electron) -> (anti electron neutrino) + (electron)

The Attempt at a Solution




The solution is the first one:

{www}.scribbleproductions.co.uk/stuff/fine1.jpg

Since the second reaction can undergo via W+ as well as Z0:

{www}.scribbleproductions.co.uk/stuff/fine2.jpg


My question is in the Feynman diagrams, why could you not have this for example:

An electron decaying to a muon neutrino ?

{www}.scribbleproductions.co.uk/stuff/fine3.jpg

Apparently the weak interaction also violates charge conservation, but I have never seen a possible reaction with a Feynman diagram that is violated at the vertices's.

Many thanks for any help :)
 
Physics news on Phys.org
hob said:

Homework Statement



What observation of the process: (anti muon neutrino) + (electron) -> (anti muon neutrino) + (electron) constitutes unambiguous evidence for weak neutral currents,

whereas the observation of (anti electron neutrino) + (electron) -> (anti electron neutrino) + (electron)

The Attempt at a Solution




The solution is the first one:

{www}.scribbleproductions.co.uk/stuff/fine1.jpg

Since the second reaction can undergo via W+ as well as Z0:

{www}.scribbleproductions.co.uk/stuff/fine2.jpg


My question is in the Feynman diagrams, why could you not have this for example:

An electron decaying to a muon neutrino ?

{www}.scribbleproductions.co.uk/stuff/fine3.jpg

Apparently the weak interaction also violates charge conservation, but I have never seen a possible reaction with a Feynman diagram that is violated at the vertices's.

Many thanks for any help :)

The weak interaction does NOT violate charge conservation! So your third diagram is impossible. Charge is always conserved
 
nrqed said:
The weak interaction does NOT violate charge conservation! So your third diagram is impossible. Charge is always conserved

Thanks for that, I was a bit uneasy to see charge violation.

Does weak violate anything to do with charge? I remember seeing something about charge violation that only the weak does not strong or e.m

Regards,
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top