Conjecture: Prime Divisibility & First Differences of Stirling & Eulerian Triangles

Raphie
Messages
151
Reaction score
0
CONJECTURE:
Subtract the Absolute Values of the Stirling Triangle (of the first kind) from those of the Eulerian Triangle. When row number is equal to one less than a prime number, then all entries in that row are divisible by that prime number.

Take for instance, row 6 (see below). The differences between Stirling and Euler Entries are:
0, 42, 217,77,-217,-119

Divide each value by 7 and you get...
0, 6, 31, 11, -31, -17

Note: Row numbers designations are callibrated to n!/(n-1)!, where n! is the row sum...

Stirling Triangle of First Kind (positive and negative signs not shown...)
http://oeis.org/A094638
http://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind

1 --> Row 1
1 01 --> Row 2
1 03 002 --> Row 3
1 06 011 006 --> Row 4
1 10 035 050 024 --> Row 5
1 15 085 225 274 120 --> Row 6

Euler's Triangle (without 0-th row = 1 = 0!)
http://oeis.org/A008292
http://noticingnumbers.net/230EULERStriangle.htm

1 --> Row 1
1 01 --> Row 2
1 04 001 --> Row 3
1 11 011 001 --> Row 4
1 26 066 026 001 --> Row 5
1 57 302 302 057 001 --> Row 6

I have only checked this (by hand, not by computer) to Row 11 (more than a year ago). Why? Because I have been trying to look at number progressions (and matrices) as if I were living in the time of Euler, Gauss, etc.. The general hypothesis is that A) one can "discover" meaningful mathematics via observation, a general understanding of how various number progressions relate to one another, and a healthy dose of inductive logic backed by "mathematical facts," even if that "one" be a non-mathematician; and B) that such observations may be based upon very small sample sizes.

A few relevant points:

I. Both triangles are generated via recourse to Binomial Coefficients.

II. All entries in row p Pascal's Triangle of Pascal's Triangle, save the first and and last entries (both 1's), are divisible by p (for p a prime number).

III. The form p-1 figures prominently in both the Euler Totient Function and Wilson's Theorem.

A counter-example or lower bound to this conjecture, or better yet, a proof, would be most welcome. And I am not tied here to being "right." In fact, I would be far more surprised and intrigued should this conjecture prove false.Raphie

P.S. The Stirling Triangle of the First Kind is quite well known as it gives the coefficients of n-hedral generating polynomials. Euler's Triangle is less well known, but conceivably important if Frampton & Kephart were on the right track, even if not "right," in their 1999 paper:

Mersenne Primes, Polygonal Anomalies and String Theory Classification
http://arxiv.org/abs/hep-th/9904212
 
Last edited by a moderator:
Physics news on Phys.org


No responses to this even as the entire forum, or so it seems, bands together (myself included) to protect the integrity of calculus? .999... equals 1? (See: https://www.physicsforums.com/showthread.php?t=484046)

Someone with proper software and applicable knowledge could either extend the lower bound or refute this conjecture outright with a minimum of effort...Raphie

P.S. Where's CRGreathouse when you "need"/want him?
 
Last edited:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top