Solution to the dirac equation and the square root of a matrix?

center o bass
Messages
545
Reaction score
2
Hi. I'm currently reading about (negative frequency) solutions to the Dirac equations which can be written on the form

\Psi = ( \sqrt{p \cdot \sigma} \chi, \sqrt{p \cdot \bar{\sigma}} \chi)^T e^{-i p \cdot x}For any two component spinor Chi. But the dot product with the four vector p and the sigma vector is a matrix, so here one is taking the square root of a matrix. What do we mean by that? Or am I interpreting this wrong?
 
Physics news on Phys.org
The square root of a matrix A is another matrix B such that BB = A. Note that, as with the square roots of numbers, there is more than one square root of a matrix. Off the top of my head, I think that a general NxN matrix could have up to 2^N distinct square roots.

If you can diagonalize A, so that A = M^-1 D M, where D is diagonal, then D lists the eigenvalues of A. Then you can verify that M^-1 sqrt(D) M is a square root of A, where sqrt(D) is a diagonal matrix whose entries are the square roots of the entries of D. So the square root of a matrix A has the same eigenvectors as A, but with eigenvalues that are the square roots of the eigenvalues of A.

Are you reading Peskin & Schroeder? I seem to recall that they make a comment to the effect that by convention they take the positive square root. So when they take the square roots of the eigenvalues, they choose positive signs.
 
center o bass, Did you see this expression in Peskin & Schroeder, or somewhere else?
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top