How Should I Calculate P(X<1.23) Using a Moment Generating Function?

psycho007
Messages
1
Reaction score
0
given m(t) = (1-p+p*e^t)^5
what is probability P(x<1.23)

i know that m(t) = e^tx * f(x)
m'(0) = E(X)
and m''(0) , can find the var(x)
should i calculate it using a normal table?
 
Physics news on Phys.org
psycho007 said:
given m(t) = (1-p+p*e^t)^5
what is probability P(x<1.23)

i know that m(t) = e^tx * f(x)
m'(0) = E(X)
and m''(0) , can find the var(x)
should i calculate it using a normal table?

No, m(t) is not e^tx * f(x), but it is ∫{e^(tx) f(x) dx: x=0..∞}.

Why would you use a normal table when the random variable is very far from normal? You can actually work out explicitly what is the distribution by expanding out the power and collecting terms in e^(kt) for k = 0,1,2,3,4,5.

RGV
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top