What is the Asymptotic Volume Fraction of Randomly Distributed Spheres in a Box?

clamtrox
Messages
938
Reaction score
9
Hey guys, I need to fill up a box with uniformly distributed set of non-overlapping spheres. This is quite easy to do numerically. I was wondering what is expectation value for the asymptotic volume fraction of the spheres.

Suppose I have a big box with side L, and spheres with radius R<<L. I pick a random point x inside the box, and add it to my collection of spheres if |x-xn|>R for all spheres already in the collection. I can keep on doing this until there's no room in the box to add another sphere; suppose that leaves me with N spheres. What is \frac{4\pi R^3}{3 L^3} E(N) ?
 
Physics news on Phys.org
This problem is called the "parking lot test" for random numbers. I am sure you will find the answer by googeling for it.
 
Hello! There is a simple line in the textbook. If ##S## is a manifold, an injectively immersed submanifold ##M## of ##S## is embedded if and only if ##M## is locally closed in ##S##. Recall the definition. M is locally closed if for each point ##x\in M## there open ##U\subset S## such that ##M\cap U## is closed in ##U##. Embedding to injective immesion is simple. The opposite direction is hard. Suppose I have ##N## as source manifold and ##f:N\rightarrow S## is the injective...
Back
Top