Is the Triple Scalar Product Always Zero?

AI Thread Summary
The discussion centers on the conditions under which the triple scalar product of vectors is zero. It clarifies that all three vectors must be coplanar for the triple product to equal zero, not just two. The confusion arises from the relationship between the cross product and the dot product of coplanar vectors. The textbook confirms that if all three vectors are coplanar, the projection leading to a zero scalar product is valid. The accompanying figure, however, does not clearly illustrate this coplanarity, leading to further confusion.
member 392791
Hello,

I am confused how vectors that are coplanar will give a triple product of zero? Or is it the case that all 3 vectors must be coplanar for a triple product of zero, or is 2 sufficient? I.e. the vector being dotted with one of the vectors being crossed in the same plane, will this produce a zero scalar product?
 
Mathematics news on Phys.org
Take any two of those coplanar vectors. The cross product is either zero or is normal to both of those vectors -- and every other vector that is coplanar with those first two vectors. What's the dot product of two vectors that are normal to one another?
 
ok, so I see that the textbook specified that if all 3 vectors are coplanar, then its triple scalar product is zero, which makes sense to me because the projection is going to be zero. It's just that the accompanying figure 3.28 doesn't make me think that the vectors are coplanar.
EDIT: here is the figure that I am referring to
 

Attachments

Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
4
Views
3K
Replies
12
Views
3K
Replies
4
Views
3K
Replies
6
Views
1K
Replies
1
Views
1K
Replies
5
Views
1K
Back
Top