How do you use substitution to solve integrals involving x, u, and n?

whkoh
Messages
29
Reaction score
0
Qn.

By using a suitable substituition, find
\int{\frac{1}{x\sqrt{1+x^n}}dx}

I haven't encountered this specific type of question before, so I went to use the obvious substitution
u^2=1+x^n, getting:

2u=n x^{n-1} \frac{dx}{du}\Leftrightarrow \frac{dx}{du}=\frac{2u}{n} x^{1-n}

Hence
\int{\frac{1}{x\sqrt{1+x^n}}dx}
=\int{\frac{2u}{n x^{1-n+1} \sqrt{u^2}}du
=\int{\frac{2ux^n}{nu}}du
=\int{\frac{2x^n}{n}}du
=\frac{2}{n}\int{x^n}du
=\frac{2}{n}\int{u^2-1}du
=\frac{2}{n}\left(\frac{1}{3}u^3 - u\right)+c
=\frac{2}{n}\left[\frac{1}{3}\left(1+x^n\right)^{\frac{3}{2}}-\sqrt{1+x^n}\right] +c

Is it correct?
 
Physics news on Phys.org
=\int{\frac{2u}{n x^{1-n+1} \sqrt{u^2}}du

This is the first error I found.

x^(1-n) would be correct if it were in the numerator.
 
I've always found it a bad idea to 'mix' your variables while integrating (the original with the substitution). I think it's better to find expressions for your x's in function of the new variable and then replace all at once.

Letting u^2 = 1 + x^n, we have that:

<br /> x^n = u^2 - 1 \Leftrightarrow x = \left( {u^2 - 1} \right)^{1/n} \Leftrightarrow dx = \frac{{2u}}{n}\left( {u^2 - 1} \right)^{\left( {1 - n} \right)/n} du<br />

Then substituting

<br /> \int {\frac{1}{{x\sqrt {1 + x^n } }}dx} \to \int {\frac{{2u}}{n}\frac{{\left( {u^2 - 1} \right)^{\left( {1 - n} \right)/n} }}{{\left( {u^2 - 1} \right)^{1/n} u}}du} = \frac{2}{n}\int {\frac{1}{{u^2 - 1}}du} <br />

As you can see, this simplifies nicely to a classical integral.

I'll leave integration and substituting back for you :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top