Distance between planes in crystals

  • Thread starter Thread starter Stephan Hoyer
  • Start date Start date
  • Tags Tags
    Crystals Planes
Stephan Hoyer
Messages
105
Reaction score
0
I'm working on a lab report on powder X-ray diffraction off of some relatively straight-forward crystals (Si, NaCl, CsCl) for an introductary course on modern physics.

I thought it would be useful to include a partial derivation of the formula relating the distance between parallel planes, d, the length of a cell edge, a, and the miller indices (hkl) for a cubic lattice:

d_{hkl} = \frac{a}{\sqrt{h^2+k^2+l^2}}

I would be happy (and it would be sufficient for my purposes) to do a basic derivation of the spacing between lines in a hypothetical two dimensional square lattice. I've thought a lot about this problem, however, and what I thought would be a clear geometrical fact is turning out to be not so obvious.

Does anyone have any hints or links to a derivation? I got several texts on X-ray diffraction from my college's library, including a text, "Interpretation of x-ray powder diffraction patterns" but none of them include a clear derivation. What I've found online seems to be generally cursory, as well. I've drawn out a two dimensional square lattice and sample parallel lines going through it and I can see that the equation holds, but I'd like a simple proof, from first principles if possible.

Thanks for your help.
 
Physics news on Phys.org
Stephan Hoyer said:
I'm working on a lab report on powder X-ray diffraction off of some relatively straight-forward crystals (Si, NaCl, CsCl) for an introductary course on modern physics.

I thought it would be useful to include a partial derivation of the formula relating the distance between parallel planes, d, the length of a cell edge, a, and the miller indices (hkl) for a cubic lattice:

d_{hkl} = \frac{a}{\sqrt{h^2+k^2+l^2}}

I would be happy (and it would be sufficient for my purposes) to do a basic derivation of the spacing between lines in a hypothetical two dimensional square lattice. I've thought a lot about this problem, however, and what I thought would be a clear geometrical fact is turning out to be not so obvious.

Does anyone have any hints or links to a derivation? I got several texts on X-ray diffraction from my college's library, including a text, "Interpretation of x-ray powder diffraction patterns" but none of them include a clear derivation. What I've found online seems to be generally cursory, as well. I've drawn out a two dimensional square lattice and sample parallel lines going through it and I can see that the equation holds, but I'd like a simple proof, from first principles if possible.

Thanks for your help.
I am not sure if this helps you but have a look at http://www.eserc.stonybrook.edu/ProjectJava/Bragg/"

AM
 
Last edited by a moderator:
I couldn't find it there with a quick look. So, anyway, it's short enough that I can write it down in a few lines.

Consider two adjacent planes, one of which goes through the origin. The second plane makes intercepts a/h, b/k, c/l (by definition of the Miller Indices). Let the point on this plane that's nearest the origin (O) be P. Then OP is the required d-spacing.

Let the line OP make angles A, B and C with each of the three axes. From trig, we have cos2(A)+cos2(B)+cos2(C)=1
But cos(A) = OP/OX = d/(a/h) = dh/a

Similarly, plug in for cos(B) and cos(C) and you will get the required result.
 
Thanks for you help. It looks like the general proof isn't actually so tedius after all, so I guess I'll include that instead.
 
Really Thanks. Thank you so much!
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top