Calculating induced power in coil

AI Thread Summary
To calculate the induced power in a coil subjected to a changing magnetic field, Faraday's law is essential, as it relates the induced voltage to the rate of change of magnetic flux. The power output can be determined using the formula P = V^2/R, where V is the induced voltage and R is the coil's resistance. The magnetic field strength can be measured in gauss or Tesla, with 1 Tesla equaling 10,000 gauss. The frequency of the magnetic field change also impacts the induced voltage, particularly if the field varies sinusoidally. Clarification is needed on whether to consider the field from the magnet's face or the side of the bolt for accurate calculations.
Jdo300
Messages
548
Reaction score
5
Hi,

I'm working on making a coil and I was wondering if there are some nifty equations out there to predict how much power the coils can make under a changing magnetic field of X gauss. I am going to be using 1 inch of a 3/8" x 2.25" bolt to wind my coil onto and I will be exposing it to a 2000 gauss field from a 0.5" x 0.5" neo magnet that is placed on the end of the coil.

I used a gauss meter to measure the amount of flux coming out of the side of the bolt where I will be wrapping the wire, and it is about 320 gauss. If I could mechanically vary this field strength on the coil by ±5% (304 - 336 gauss) at frequency X, how would I determine the power output? I am planning on using 20 gauge magnet wire for the coil, which will be 1" tall, and 1.5" in diameter.

Any help/pointers would be great :smile:
 
Physics news on Phys.org
Jdo300 said:
Hi,

I'm working on making a coil and I was wondering if there are some nifty equations out there to predict how much power the coils can make under a changing magnetic field of X gauss. I am going to be using 1 inch of a 3/8" x 2.25" bolt to wind my coil onto and I will be exposing it to a 2000 gauss field from a 0.5" x 0.5" neo magnet that is placed on the end of the coil.

I used a gauss meter to measure the amount of flux coming out of the side of the bolt where I will be wrapping the wire, and it is about 320 gauss. If I could mechanically vary this field strength on the coil by ±5% (304 - 336 gauss) at frequency X, how would I determine the power output? I am planning on using 20 gauge magnet wire for the coil, which will be 1" tall, and 1.5" in diameter.
The induced voltage depends on the diameter (area) of the coil and the number of turns of the coil. The power is determined as well by the resistance of the coil. Faraday's law will give you the induced emf in the coil:

V_{induced} = \frac{d\phi}{dt} = NA\frac{dB}{dt}

That is the potential energy per unit charge in the coil. If the coil is connected to a load, there will be energy consumed. The current will be I = V/R. The power is

P = VI = V^2/R = \frac{N^2A^2}{R}\left(\frac{dB}{dt}\right)^2

AM
 
Last edited:
Hi, what units are those variables in? is B in gauss or Tesla?

Thanks,
Jason O
 
Jdo300 said:
Hi, what units are those variables in? is B in gauss or Tesla?
All SI units. One Tesla = 10,000 Gauss.

AM
 
Andrew Mason said:
All SI units. One Tesla = 10,000 Gauss.

AM

Hi,

Thanks for the info. How do I account for the frequency at which the magnetic field changes? If I were to assume that the function of B was sinusoidal, then how do I account for the amount of voltage at frequency X? It gets even a bit weirder in my case because the field is not varying from positive to negative but using a function which I made based on the graph from the simulator. Another thing I'm wondering is if the field I should be calculating is the field that is coming out of the sides of the bolt into the coil, or the field that is coming directly from the face of the magnet into the bolt? Once I can get this straightened out, I already know the information about the wire. I calculated that for the dimensions of my coil, I would have about 320 turns of 20 gauge wire, which according to the wire chart is 0.093 Ohms (I changed the diameter of the coil to 1.25 in by the way).

Thanks,
Jason O
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top