Bob
- 28
- 0
I think R2 is a subspace of R3 in the form(a,b,0)'.
To begin with, for W to be a subspace of V, it must be a subset of V. Things in R^2 are of the form (a, b), with two components while things in R^3 are of the form (a, b, c) with three components. Members of R^2 are not members of R^3 so R^2 is not a subset of R^3.MaxManus said:I know that it is an old thread, but I still don't get why R^2 is not a subspace of R^3. Is it only because R^3 has 3 components and R^2 only 2 components? Is it possible to use the three conditions to show that R^2 is not a subspace of R^3?
1. The zero vector, 0, is in W.
2. If u and v are elements of W, then the sum u + v is an element of W;
3. If u is an element of W and c is a scalar from K, then the scalar product cu is an element of W;