Differentiating Black Body Energy Density: Seeking Answers

The Bob
Messages
1,126
Reaction score
0
Hi all,

I hope everyone is well and that life is treating you all good.

I am going to be honest with my question and say that I have not tried to do it myself yet. I, unfortunately, do not have time now to try and then repost so I do hope you will all forgive me for just stating a question. I do intent to attempt it tonight incase I can do it but for safety sake I am going to ask here as well, as on inspection it does not look to simple.

I will also say that this is for a University problem set that I have to do so, in a way it is homework. If the Mentors wish to move the thread then please do so and let me know via the messaging service please.

The problem is this: I need to differentiate the formula for the Energy Density of a Black Body:

U(\nu) = \frac{8 \pi \nu^3 h}{c^3 (e^{\frac{h \nu}{kT}} - 1)}

So I need: \frac{dU}{d \nu} = 0

As I said, I have not attempted it but please assume I understand the main rules of A-leve Mathematics. Again, I apologise for not having attempted it but I am in a rush and really cannot do it before I go. I will attempt it tonight and report what I find tomorrow but it maybe too little too late.

Thanks in advance.

The Bob (2004 ©)

P.S. Please note that there is a h (for Planck's Constant) missing from the numberate of the equation and that dU by dv needs to equal 0, in the end. See next post.
 
Last edited:
Physics news on Phys.org
Correct equations

U(\nu) = \frac{8 \pi \nu^3 h}{c^3 (e^{\frac{h \nu}{kT}} - 1)}

and

\frac{dU}{d \nu} = 0

Cheers,

The Bob (2004 ©)
 
As promised, I attempted the differentiation myself last night.

I got to \frac{dU}{d \nu} = \frac{8 \pi h \nu^2}{c^3} \cdot \frac{e^{\frac{h \nu}{kT}}(3 - \frac{h \nu}{kT}) - 3}{e^{\frac{h \nu}{kT}(e^{\frac{h \nu}{kT} - 2) + 1}

but something tells me I did the differentiation wrong in the first place. I used the equation as a quotient but did nothing with the T, because it is a constant for different graphs but can be varied.

Can anyone shine a million watt torch's light on this problem please.

Cheers,

The Bob (2004 ©)
 
Don't worry about it guys. I solved it for low frequencies and had the correct magnitude. I also used Maple for a more accurate value.

Thanks for all the help. :smile:

The Bob (2004 ©)
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top