stunner5000pt
- 1,443
- 4
More integration :)
\frac{1}{4 \pi \sigma^2} \int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2\sigma^2}}
we know that
\int_{-\infty}^{\infty} e^{-\frac{x^2}{2\sigma^2}} = \sqrt{2 \pi \sigma^2}
and then differentiate both sides wrt sigma
\int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2\sigma^2}} = \sigma^3 \sqrt{2 \pi}
sib the third into the first
\frac{1}{4 \pi \sigma^2} \sigma^3 \sqrt{2 \pi}
\frac{\sigma \sqrt{2 \pi}}{4 \pi}
something is wrong .. where did i go wrong ... pelase help :(
\frac{1}{4 \pi \sigma^2} \int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2\sigma^2}}
we know that
\int_{-\infty}^{\infty} e^{-\frac{x^2}{2\sigma^2}} = \sqrt{2 \pi \sigma^2}
and then differentiate both sides wrt sigma
\int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2\sigma^2}} = \sigma^3 \sqrt{2 \pi}
sib the third into the first
\frac{1}{4 \pi \sigma^2} \sigma^3 \sqrt{2 \pi}
\frac{\sigma \sqrt{2 \pi}}{4 \pi}
something is wrong .. where did i go wrong ... pelase help :(
Last edited: