Finding Moment of Inertia for Wagon Wheel

  • Thread starter Thread starter PascalPanther
  • Start date Start date
  • Tags Tags
    Force Rotational
AI Thread Summary
The discussion centers on calculating the moment of inertia for a wooden wagon wheel, weighing 70 kg with a diameter of 120 cm. The initial approach used the formula I = MR², which resulted in an unrealistic moment of inertia due to the incorrect assumption about mass distribution. A second method, accounting for tension and acceleration, provided a more accurate calculation, yielding I = 16.6 N·s. The conversation highlights the importance of considering how mass is distributed in the wheel and correcting for gravitational effects in the calculations. Ultimately, the correct approach leads to a moment of inertia that reflects the wheel's actual physical properties.
PascalPanther
Messages
23
Reaction score
0
While working on your latest novel about settlers crossing the Great Plains in a wagon train, you get into an argument with your co-author regarding the moment of inertia of an actual wooden wagon wheel. The 70-kg wheel is 120-cm in diameter and has heavy spokes connecting the rim to the axle. Your co-author claims that you can approximate using I = MR2 (like for a hoop) but you anticipate I will be significantly less than that because of the mass located in the spokes. To find I experimentally, you mount the wheel on a low-friction bearing then wrap a light cord around the outside of the rim to which you attach a 20-kg bag of sand. When the bag is released from rest, it drops 3.77 m in 1.6 s.
Here is what I did initially:

v = 3.77m/1.6s
mgh = (1/2)mv^2 + (1/2)*I*omega^2
omega = v/R
(20kg)(9.8)(3.77m) = (1/2)(20kg)(2.36 m/s)^2 + (1/2)I((2.36)^2/(0.60)^2)
I = 88.3 ... which is more than I = MR^2 = 25.2 ...

So this is entirely wrong, because I know it should be less, since the mass is more evenly distributed.
Second approach, I believe the drops 3.77 m in 1.6 s is still due to gravity, is not constant velocity. There must also be tension then since it is less than gravitational acceleration.

mg - T = ma
y=(1/2)a*t^2
(3.77m) = (1/2)a(1.6)^2
a= 2.95 m/s^2

(20 kg)(9.8) - T = (20kg)(2.95)
T = 137N

torque = F*R
Only T does something in relation to the rotation of the axis? So:
torque = T*R = I * alpha
alpha = a/R = 2.95m/s^2 / 0.60m = 4.92 rad/s^2

137N * 0.60m = I * (4.92 rad/s^2)
I = 16.6 N s

Well I got the less inertia part now. But was that the right way to do it?
 
Physics news on Phys.org
Both ways should give you the same result. You made an error in your first calculation. A hint as to where that error is can be found in your second calculation (a = 2.95m/s²). How fast is the mass moving at the end of 1.6 seconds?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top