"Proving Nilpotent Element in R has Unique Solution

  • Thread starter Thread starter rookandpawn
  • Start date Start date
  • Tags Tags
    Element
rookandpawn
Messages
16
Reaction score
0

Homework Statement



An element a of a ring is nilpotent if a^n = 0 for some positive integer n.
Prove that R has no nonzero nilpotent elements if and only if 0 is the unique
solution of the equation x^2 = 0

Homework Equations



I think nilpotent means that not only that a^n = 0 for some positive integer
n but that n is the least positive integer such that a^n = 0. ?


The Attempt at a Solution



Proving ->
if R has no nonzero nilpotent elements then there is no nonzero element a such that a^n = 0, and specifically in the case of n = 2, there is no such a.
Hence 0 is the unique solution of x^2 = 0


Proving <-(via contradiction)
if 0 is the unique solution of x^2 = 0 then
if R does have some nonzero nilpotent element a, then a^n = 0 for
some positive inetger n.

then either
n is even where a^n = a^(n/2) * a^(n/2) = 0
but since 0 is the unique solution of x^2 = 0, then
a^(n/2) = 0. Which contradicts the fact that n is the least
positive integer for which a^n = 0.

Or n is odd, where
a^n = 0 ---> (a^n)*(a) = 0 * (a) (multiplying both sides by a)
---> a^(n+1) = 0, now n+1 is an even integer,
which can then be factored into a square
so a^(n+1/2) * a^(n+1/2) = 0, but since 0 is the unique
solution of x^2 = 0, then a^(n+1/2) = 0, which contradicts the
fact that n is the least positive integer for which a^n = 0.

I would very much appreciate any evaluation of my attempt. Especially because I feel unsure of the n is odd case, since I just multiplied both sides by a so i could get the square.
 
Physics news on Phys.org
What could be wrong with that? I think you are just lacking confidence. You may want to say explicitly that a^n=0 and a^m!=0 for m<n. As you say, make sure n is the least nilpotent power of a.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top