Did You Solve the Diff Eq Problem?

glid02
Messages
54
Reaction score
0
Crap, nevermind, I left b^2 out of the quadratic formula, thanks anyways.

Here's the question:
Find y as a function of t from the diff eq:
y''+6y'+25y=0 with the initial conditions y(0)=8 and y'(0)=8

I used the form r^2+6r+25=0 to solve for r and through the quadratic equation got r = -3+/-5i
so my equation now looks like
c1*e^(-3t)*cos(5t)+c2*e^(-3t)*sin(5t)=8
The second part of the equation cancels and I'm left with c1=8
Now to find y'(0) I have:
-3*c1*e^(-3t)*cos(5t)+c1*e^(-3t)*(-5*sin(5t))+-3*c2*e^(-3t)*sin(5t)
+c2*e^(-3t)*(5*cos(5t))
The second and third terms in that cancel out and I'm left with
-3*c1*e^(-3t)*cos(5t)+c2*e^(-3t)*5*cos(5t), and plugging in 0 for t and 8 for c1 I get:
-24+5*c2=8
5*c2=32
c2=32/5

So the final equation looks like
8*e^(-3t)*cos(5t)+32/5*e^(-3t)*sin(5t)

This isn't right and I can't figure out what I did wrong. Any help would be awesome.

Thanks a lot.
 
Physics news on Phys.org
glid02 said:
Crap, nevermind, I left b^2 out of the quadratic formula, thanks anyways.

Does this mean you've solved the problem?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top