Absolute Values and Continuous Functions

Rosey24
Messages
12
Reaction score
0

Homework Statement



We recently proved that if a function, f, is continuous, it's absolute value |f| is also continuous. I know, intuitively, that the reverse is not true, but I'm unable to come up with an example showing that, |f| is continuous, b f is not. Any examples or suggestions would be appreciated. Thanks!

Homework Equations



The Attempt at a Solution

 
Physics news on Phys.org
What about f(x) = -1 if x < 0 and 1 if x \ge 0?
Then |f(x)| = 1 for all x - about as continuous as you get them, but f is not. In fact, you could even do something pathetic like make f equal -1 on all rationals and 1 on all irrational numbers :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top