Vector calculus - line integral computation

braindead101
Messages
158
Reaction score
0
Compute the line integral \int_{C} F\cdot dr where F = -y i + x j. The directed path C in the xy-plane consists of two parts: i) a left semicircle from (0, -1) to (0, 1) with center at the origin, and ii) a straight line segment from (0,1) to (2,1).

i) r(t) = cos t i + sin t j [pi/2 <=t<= 3pi/2]
ii) r(t) = 2t i + j [0<=t<=1]

for i):
F(r (t) ) = - sin t i + cos t j
r'(t) = - sin t i + cos t j

integ F(r(t)) dot r'(t) dt
= integ 1 dt [pi/2<=t<= 3pi/2]
so integral is
3pi/2 - pi/2 = pi ?
is this correct so far.
 
Physics news on Phys.org
braindead101 said:
Compute the line integral \int_{C} F\cdot dr where F = -y i + x j. The directed path C in the xy-plane consists of two parts: i) a left semicircle from (0, -1) to (0, 1) with center at the origin, and ii) a straight line segment from (0,1) to (2,1).

i) r(t) = cos t i + sin t j [pi/2 <=t<= 3pi/2]
ii) r(t) = 2t i + j [0<=t<=1]

for i):
F(r (t) ) = - sin t i + cos t j
r'(t) = - sin t i + cos t j

integ F(r(t)) dot r'(t) dt
= integ 1 dt [pi/2<=t<= 3pi/2]
so integral is
3pi/2 - pi/2 = pi ?
is this correct so far.
Almost- you have the "orientation" backwards. The path does not go "from pi/2 to 3pi/2" (i.e. from (0,1) to (0,-1)), it goes "from 3pi/2 to pi/2" (from (0,-1) to (0,1)). That reverses the sign on the integral.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top